Reconstitution of nucleotide excision repair at the single molecule level in vitro and in vivo
体外和体内单分子水平的核苷酸切除修复重建
基本信息
- 批准号:BB/P00847X/1
- 负责人:
- 金额:$ 41.51万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2017
- 资助国家:英国
- 起止时间:2017 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Simply stepping outside on a sunny day exposes the skin to enough ultraviolet radiation (UV) to cause blistering and the formation of cancerous tumours. Why this doesn't occur is due to enzymes present in every cell that scan DNA for damage and then initiate repair. Xeroderma pigmentosum (XP) is one of a number of diseases caused by deficiencies in this repair pathway and for individuals with XP this leads to skin blistering, cancer and neurological dysfunction. A complete lack of these nucleotide excision repair (NER) enzymes is lethal. Because most organisms are exposed to UV, this mechanism of DNA repair is conserved across all forms of life. In humans over 30 enzymes are involved in NER, whereas in bacteria only 6 enzymes are required. Therefore understanding NER at the simpler bacterial level will provide insight into the human equivalent. Despite decades of research into NER there is surprisingly little known about the precise details. The components are well-established but how they work together is still uncertain. The main aim of our work is to understand how the bacterial system works as a whole, but still at the molecular level. This is important because the classical approach of studying individual components may miss the formation of enzyme complexes or overstate the importance of individual components. This is very complex and therefore we study single molecules to simplify the system. We aim to directly watch complexes forming, their mechanisms of damage location and the recruitment of other components. These are all physical concepts; a protein has to search through a sea of undamaged DNA to find the lesion, somehow it must communicate with other proteins to signal that it has achieved this goal and then organise these other proteins onto the site of damage. Only through single molecule imaging of a complex mixture of components can we get a true picture of how DNA is repaired. To take this further we are also proposing to image these processes in live bacteria. We will use cutting edge techniques to isolate single molecules within cells and study how they behave alone and with each other. This is immensely exciting; the prospect of visualising single molecule processes in their native environments is a very new field of study. These combined approaches will offer a complete view of how DNA repair occurs in vitro and in vivo.Not only will this project improve our understanding of bacteria repair it will serve as a proxy for understanding how proteins interact with DNA more generally. There is a gap in our toolset from cell biology to single molecule imaging that we will fill during this project. Therefore the tools and techniques that we develop will find application across a wide range of problems. Ultimately, the knowledge gained from this study will inform studies of human equivalent systems, such as XP. This will have considerable impact on the lives of individuals with this highly debilitating condition.
只要在阳光明媚的日子走到户外,皮肤就会暴露在足够的紫外线辐射下,从而引起水泡和癌性肿瘤的形成。为什么这种情况不会发生,是因为每个细胞中都存在酶,它们会扫描 DNA 是否有损伤,然后启动修复。着色性干皮病 (XP) 是由这种修复途径缺陷引起的多种疾病之一,对于 XP 患者来说,这会导致皮肤起泡、癌症和神经功能障碍。完全缺乏这些核苷酸切除修复(NER)酶是致命的。由于大多数生物体都会暴露在紫外线下,因此这种 DNA 修复机制在所有生命形式中都是保守的。在人类中,超过 30 种酶参与 NER,而在细菌中只需要 6 种酶。因此,在更简单的细菌水平上理解 NER 将有助于深入了解人类的 NER。尽管对 NER 进行了数十年的研究,但令人惊讶的是,人们对具体细节知之甚少。这些组件已经很成熟,但它们如何协同工作仍然不确定。我们工作的主要目的是了解细菌系统作为一个整体是如何运作的,但仍然是在分子水平上。这很重要,因为研究单个组分的经典方法可能会错过酶复合物的形成或夸大单个组分的重要性。这是非常复杂的,因此我们研究单分子来简化系统。我们的目标是直接观察复合物的形成、其损伤位置的机制以及其他成分的招募。这些都是物理概念;蛋白质必须在大量未受损的 DNA 中搜索才能找到病变,它必须以某种方式与其他蛋白质进行通信,以发出信号表明它已经实现了这一目标,然后将这些其他蛋白质组织到受损部位。只有通过对复杂的成分混合物进行单分子成像,我们才能真实了解 DNA 是如何修复的。为了更进一步,我们还建议对活细菌中的这些过程进行成像。我们将使用尖端技术分离细胞内的单个分子,并研究它们单独和彼此之间的行为方式。这是非常令人兴奋的;在自然环境中可视化单分子过程的前景是一个非常新的研究领域。这些组合方法将提供 DNA 修复在体外和体内如何发生的完整视图。该项目不仅将提高我们对细菌修复的理解,还将作为更广泛地理解蛋白质如何与 DNA 相互作用的代理。从细胞生物学到单分子成像,我们的工具集中存在一个空白,我们将在这个项目中填补这一空白。因此,我们开发的工具和技术将适用于解决广泛的问题。最终,从这项研究中获得的知识将为人类等效系统(例如 XP)的研究提供信息。这将对患有这种高度衰弱疾病的人的生活产生相当大的影响。
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Understanding the coupling between DNA damage detection and UvrA's ATPase using bulk and single molecule kinetics.
- DOI:10.1096/fj.201800899r
- 发表时间:2019-01
- 期刊:
- 影响因子:0
- 作者:Barnett JT;Kad NM
- 通讯作者:Kad NM
Combining cancer chemotherapeutics with bacterial DNA repair inhibitors to develop novel antimicrobials
- DOI:10.1101/2023.03.17.532951
- 发表时间:2023-03
- 期刊:
- 影响因子:0
- 作者:L. Bernacchia;Arya Gupta;A. Paris;Alexandra A. Moores;N. Kad
- 通讯作者:L. Bernacchia;Arya Gupta;A. Paris;Alexandra A. Moores;N. Kad
Recruitment of UvrBC complexes to UV-induced damage in the absence of UvrA increases cell survival.
- DOI:10.1093/nar/gkx1244
- 发表时间:2018-02-16
- 期刊:
- 影响因子:14.9
- 作者:Springall L;Hughes CD;Simons M;Azinas S;Van Houten B;Kad NM
- 通讯作者:Kad NM
The TFIIH subunits p44/p62 act as a damage sensor during nucleotide excision repair.
- DOI:10.1093/nar/gkaa973
- 发表时间:2020-12-16
- 期刊:
- 影响因子:14.9
- 作者:Barnett JT;Kuper J;Koelmel W;Kisker C;Kad NM
- 通讯作者:Kad NM
Identification of the target and mode of action for the prokaryotic nucleotide excision repair inhibitor ATBC.
- DOI:10.1042/bsr20220403
- 发表时间:2022-06-30
- 期刊:
- 影响因子:4
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Neil Kad其他文献
Neil Kad的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Neil Kad', 18)}}的其他基金
Understanding dual filament regulation in muscle using single molecule imaging in vitro and in myofibrils
使用体外单分子成像和肌原纤维了解肌肉中的双丝调节
- 批准号:
BB/Y001621/1 - 财政年份:2024
- 资助金额:
$ 41.51万 - 项目类别:
Research Grant
A multi-user access laser tweezers, fluorescence and interference microscopy facility for understanding force at the molecular level
多用户访问激光镊子、荧光和干涉显微镜设备,用于了解分子水平的力
- 批准号:
BB/T017767/1 - 财政年份:2020
- 资助金额:
$ 41.51万 - 项目类别:
Research Grant
A Generalised Approach to Derive Functionally Active Peptide Inhibitors of Transcription Factor Activity
衍生转录因子活性的功能活性肽抑制剂的通用方法
- 批准号:
BB/R017921/1 - 财政年份:2018
- 资助金额:
$ 41.51万 - 项目类别:
Research Grant
Developing and validating a new tool for simultaneous multi-channel wide-field imaging
开发并验证同步多通道宽视场成像的新工具
- 批准号:
BB/M019144/1 - 财政年份:2015
- 资助金额:
$ 41.51万 - 项目类别:
Research Grant
Developing a novel single molecule imaging technology for application across disciplines
开发一种跨学科应用的新型单分子成像技术
- 批准号:
BB/M01343X/1 - 财政年份:2014
- 资助金额:
$ 41.51万 - 项目类别:
Research Grant
A real-time single molecule approach to understand how DNA repair proteins locate and remove damage
实时单分子方法了解 DNA 修复蛋白如何定位和消除损伤
- 批准号:
BB/I003460/1 - 财政年份:2011
- 资助金额:
$ 41.51万 - 项目类别:
Research Grant
相似国自然基金
昼夜节律与核苷酸切除修复相互调控的分子机制研究
- 批准号:
- 批准年份:2022
- 资助金额:54 万元
- 项目类别:面上项目
DNA损伤和核苷酸切除修复(NER)通路关键基因DDB2/XPE在慢阻肺细胞衰老中的作用及调控方式
- 批准号:
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:
长寿基因SIRT7调控核苷酸切除修复通路的机制研究
- 批准号:
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于核苷酸切除修复通路参麦方对奥沙利铂治疗结直肠癌的增敏机理
- 批准号:81803926
- 批准年份:2018
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
基因组水平上DNA复制对核苷酸切除修复的影响研究
- 批准号:31870804
- 批准年份:2018
- 资助金额:59.0 万元
- 项目类别:面上项目
相似海外基金
Impact of ATR's role in translesion synthesis on prevention of DNA damage induced mutagenesis and chromosomal instability
ATR 在跨损伤合成中的作用对预防 DNA 损伤诱导的突变和染色体不稳定性的影响
- 批准号:
10634852 - 财政年份:2023
- 资助金额:
$ 41.51万 - 项目类别:
Employing viruses to unravel the functional significance of the m5C epitranscriptome
利用病毒揭示 m5C 表观转录组的功能意义
- 批准号:
10638533 - 财政年份:2023
- 资助金额:
$ 41.51万 - 项目类别:
Impact of CRISPR-associated transposons on anti-phage immunity in Vibrio cholerae
CRISPR相关转座子对霍乱弧菌抗噬菌体免疫的影响
- 批准号:
10556364 - 财政年份:2022
- 资助金额:
$ 41.51万 - 项目类别:
Mechanisms of DNA damage processing and the initiation of Nucleotide Excision Repair
DNA损伤处理机制和核苷酸切除修复的启动
- 批准号:
10513526 - 财政年份:2022
- 资助金额:
$ 41.51万 - 项目类别: