Development of optogenetically controlled gene expression tools for the characterization of neuronal circuits involved in insect reproduction

开发光遗传学控制的基因表达工具,用于表征昆虫繁殖中涉及的神经元回路

基本信息

  • 批准号:
    BB/N021827/1
  • 负责人:
  • 金额:
    $ 19.2万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2017
  • 资助国家:
    英国
  • 起止时间:
    2017 至 无数据
  • 项目状态:
    已结题

项目摘要

Reproductive behaviors and their regulation are most fundamental to all animals, but have been exploited little for population control in insects. Since they are hard-wired into the brain we can learn how this behavioral program is encoded in the brain and shaped by perception and decision-making processes. Understanding how behavior is encoded in the brain is one of the big challenges in biology and requires a behaviorally and genetically tractable model organism, but also tools to manipulate localized neurons. One of the key tools to achieve this aim are light-manipulateable molecules, such ion channels, where light can be used to control neuronal activity in space and time. Due to the small size of insects, however, this technology has its limitation. Here, we want to adapt light-inducible transcription factors derived from bacteria and plants already used in mammalian cell culture to Drosophila to characterize the neuronal circuits involved in reproduction. For this analysis we will capitalize on gene expression regulatory sequences known to characterize neuronal populations involved in reproduction, but these gene expression patterns are complex. To be able to assign functions to localized neurons therefore requires spatial dissection of these gene expression patterns, which can be achieved by light-controlled transcription factors.To develop such light-controlable tools to manipulate gene expression, we will capitalize on the robust post-mating responses (PMRs) of the fruit fly Drosophila melanogaster. Here, male-derived sex-peptide (SP) transferred during mating is the key molecule leading to refusal to remate and induction of egg laying. The very robust behavioral response of Drosophila females to sex-peptide provides the essential prerequisites to map SP responsive neurons and eventually learn how complex behaviors such as mating choice and control of egg laying are encoded in the brain.Our recent studies showed that there are several distinct neuronal populations that can via exposure to SP induce refusal to remate and egg laying. We currently do not know where in the fly these neurons are located, however, we could show that these two post-mating responses can be separated. Candidate neurons for SP induced post-mating responses include sensory neurons in the genital tract and in the legs, but also neurons in the abdominal ganglion and the central brain. To identify the neuronal circuitry underlying the sex-peptide response, we will use light induced gene expression directed to neurons in specific parts of the female fly body to express membrane-tethered SP. Such optogentic manipulation of gene expression has the advantage to be fully controllable in space and time. With these experiments we will test the hypothesis that the response to SP is comprised of a modular assembly of individual elements, e.g. refusal to remate or induction of egg laying. Compared to the previous model arguing for central induction of all PMRs, a modular assembly of individual PMRs holds evolutionary flexibility during speciation and adaptation to diverse habitats, but can maintain basic regulatory principles such as the control of egg laying. We therefore anticipate that the knowledge obtained from our studies will be applicable to a wide range of pest insects pinpointing towards novel strategies for pest management to protect crop and control insect born diseases by interfering with egg laying. In particular, our findings are directly transferable to the close relative Drosophila suzukii, one of the few species able to lay eggs into fruits, which is currently invading Europe including the UK and causing damage worth billions of pounds to fruit production.
生殖行为及其调节对所有动物来说都是最基本的,但在昆虫种群控制方面却很少被利用。由于它们被硬连接到大脑中,我们可以了解这种行为程序是如何在大脑中编码并由感知和决策过程塑造的。了解行为如何在大脑中编码是生物学的一大挑战,需要一个行为和遗传上易于处理的模型生物体,但也需要操纵局部神经元的工具。实现这一目标的关键工具之一是可光操纵的分子,例如离子通道,其中光可用于控制空间和时间上的神经元活动。然而,由于昆虫体型较小,这项技术也有其局限性。在这里,我们希望将来自已用于哺乳动物细胞培养的细菌和植物的光诱导转录因子应用于果蝇,以表征参与繁殖的神经元回路。在本分析中,我们将利用已知的基因表达调控序列来表征参与繁殖的神经元群体,但这些基因表达模式很复杂。因此,为了能够将功能分配给局部神经元,需要对这些基因表达模式进行空间解剖,这可以通过光控转录因子来实现。为了开发这种光控工具来操纵基因表达,我们将利用强大的后处理技术果蝇果蝇的交配反应(PMR)。在这里,交配过程中转移的雄性性肽(SP)是导致拒绝再交配和诱导产卵的关键分子。雌性果蝇对性肽的非常强烈的行为反应为绘制 SP 反应神经元提供了必要的先决条件,并最终了解复杂的行为(例如交配选择和产卵控制)如何在大脑中编码。我们最近的研究表明,有几个不同的神经元群体可以通过暴露于 SP 诱导拒绝重交和产卵。我们目前不知道这些神经元在果蝇中的位置,但是,我们可以证明这两种交配后反应是可以分开的。 SP 诱导的交配后反应的候选神经元包括生殖道和腿部的感觉神经元,还有腹部神经节和中脑的神经元。为了确定性肽反应背后的神经元回路,我们将使用光诱导的基因表达定向到雌性果蝇身体特定部位的神经元来表达膜束缚的 SP。这种基因表达的光遗传学操纵具有在空间和时间上完全可控的优点。通过这些实验,我们将测试以下假设:对 SP 的响应由各个元素的模块化组件组成,例如拒绝重新交配或诱导产卵。与之前主张所有 PMR 集中诱导的模型相比,单个 PMR 的模块化组装在物种形成和适应不同栖息地期间具有进化灵活性,但可以维持基本的调节原则,例如控制产卵。因此,我们预计从我们的研究中获得的知识将适用于广泛的害虫,从而确定害虫管理的新策略,以保护作物并通过干扰产卵来控制虫媒疾病。特别是,我们的研究结果可直接应用于近亲果蝇铃木果蝇(Drosophila suzukii),铃木果蝇是少数能够在水果中产卵的物种之一,目前它正在入侵包括英国在内的欧洲,并对水果生产造成价值数十亿英镑的损失。

项目成果

期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Channel nuclear pore complex subunits are required for transposon silencing in Drosophila.
  • DOI:
    10.7554/elife.66321
  • 发表时间:
    2021-04-15
  • 期刊:
  • 影响因子:
    7.7
  • 作者:
    Munafò M;Lawless VR;Passera A;MacMillan S;Bornelöv S;Haussmann IU;Soller M;Hannon GJ;Czech B
  • 通讯作者:
    Czech B
Channel nuclear pore protein 54 directs sexual differentiation and neuronal wiring of female reproductive behaviors in Drosophila.
  • DOI:
    10.1186/s12915-021-01154-6
  • 发表时间:
    2021-10-20
  • 期刊:
  • 影响因子:
    5.4
  • 作者:
    Nallasivan MP;Haussmann IU;Civetta A;Soller M
  • 通讯作者:
    Soller M
Indel driven rapid evolution of core nuclear pore protein gene promoters.
  • DOI:
    10.1038/s41598-023-34985-0
  • 发表时间:
    2023-05-17
  • 期刊:
  • 影响因子:
    4.6
  • 作者:
  • 通讯作者:
Thiamethoxam exposure deregulates short ORF gene expression in the honey bee and compromises immune response to bacteria.
  • DOI:
    10.1038/s41598-020-80620-7
  • 发表时间:
    2021-01-15
  • 期刊:
  • 影响因子:
    4.6
  • 作者:
    Decio P;Ustaoglu P;Derecka K;Hardy ICW;Roat TC;Malaspina O;Mongan N;Stöger R;Soller M
  • 通讯作者:
    Soller M
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Matthias Soller其他文献

Pre-messenger RNA processing and its regulation: a genomic perspective

Matthias Soller的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Matthias Soller', 18)}}的其他基金

Understanding multi-level impact of male-derived sex peptide on female reproductive behaviours
了解男性性肽对女性生殖行为的多层次影响
  • 批准号:
    BB/Y006364/1
  • 财政年份:
    2024
  • 资助金额:
    $ 19.2万
  • 项目类别:
    Research Grant
The mRNA cap epitranscriptome: Understanding an essential novel layer of gene expression in neuronal differentiation and function
mRNA 帽表观转录组:了解神经元分化和功能中基因表达的重要新层
  • 批准号:
    BB/X008193/1
  • 财政年份:
    2023
  • 资助金额:
    $ 19.2万
  • 项目类别:
    Research Grant
Drosophila Down Syndrome Cell Adhesion Molecule: A paradigm for revealing hidden splicing codes
果蝇唐氏综合症细胞粘附分子:揭示隐藏剪接代码的范例
  • 批准号:
    BB/T003936/1
  • 财政年份:
    2021
  • 资助金额:
    $ 19.2万
  • 项目类别:
    Research Grant
m6A mRNA methylation - understanding an essential mechanism adjusting gene expression during development and differentiation
m6A mRNA 甲基化 - 了解发育和分化过程中调节基因表达的基本机制
  • 批准号:
    BB/R002932/1
  • 财政年份:
    2018
  • 资助金额:
    $ 19.2万
  • 项目类别:
    Research Grant
Multimerisation of ELAV/Hu proteins - a key mechanism ensuring fidelity of alternative splicing regulation
ELAV/Hu 蛋白的多聚化——确保选择性剪接调控保真度的关键机制
  • 批准号:
    BB/K006827/1
  • 财政年份:
    2013
  • 资助金额:
    $ 19.2万
  • 项目类别:
    Research Grant
Characterization and function of ELAV post-transcriptionally controlled gene networks in neuronal differentiation
ELAV 转录后控制基因网络在神经元分化中的特征和功能
  • 批准号:
    BB/F000855/1
  • 财政年份:
    2008
  • 资助金额:
    $ 19.2万
  • 项目类别:
    Research Grant

相似国自然基金

超声诱导多波段应力发光材料的设计和机理分析及其光遗传学应用
  • 批准号:
    52372160
  • 批准年份:
    2023
  • 资助金额:
    51 万元
  • 项目类别:
    面上项目
光遗传学调控中缝正中核五羟色胺能神经元改善颞叶癫痫焦虑共病的机制研究
  • 批准号:
    82371450
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
近红外光调控的RNA光遗传学技术研究
  • 批准号:
    32371515
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
光遗传学技术在大肠杆菌生物膜发酵体系的定向构建及机制研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
近红外光响应的仿生稀土纳米器件用于光遗传学调控癫痫
  • 批准号:
    32271437
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Collaborative Research: Composite vascularized niches for optogenetically actives beta-cells
合作研究:光遗传学活性β细胞的复合血管化生态位
  • 批准号:
    2326510
  • 财政年份:
    2023
  • 资助金额:
    $ 19.2万
  • 项目类别:
    Standard Grant
Collaborative Research: Composite vascularized niches for optogenetically actives beta-cells
合作研究:光遗传学活性β细胞的复合血管化生态位
  • 批准号:
    2326511
  • 财政年份:
    2023
  • 资助金额:
    $ 19.2万
  • 项目类别:
    Standard Grant
Neural basis of visual feature perception: investigation with optogenetically induced illusory perception
视觉特征感知的神经基础:光遗传学诱导的错觉感知的研究
  • 批准号:
    16K18372
  • 财政年份:
    2016
  • 资助金额:
    $ 19.2万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
Restoring cognition by optogenetically rescuing gamma rhythms in PFC interneurons
通过光遗传学拯救 PFC 中间神经元的伽马节律来恢复认知
  • 批准号:
    9021001
  • 财政年份:
    2015
  • 资助金额:
    $ 19.2万
  • 项目类别:
Optogenetically induced super long term plasticity
光遗传学诱导的超长期可塑性
  • 批准号:
    15K12765
  • 财政年份:
    2015
  • 资助金额:
    $ 19.2万
  • 项目类别:
    Grant-in-Aid for Challenging Exploratory Research
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了