Analysing GORK clustering for enhanced stomatal control

分析 GORK 聚类以增强气孔控制

基本信息

  • 批准号:
    BB/M001601/1
  • 负责人:
  • 金额:
    $ 57.06万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2015
  • 资助国家:
    英国
  • 起止时间:
    2015 至 无数据
  • 项目状态:
    已结题

项目摘要

Stomata are pores that provide for gaseous exchange across the impermeable cuticle of plant leaves. They open and close to balance the requirement for CO2 entry for photosynthesis against the need to reduce the transpiration of water vapour and prevent leaf drying. Stomatal transpiration is at the centre of a crisis in water availability and crop production that is expected to unfold over the next 20-30 years: globally, agricultural water usage has increased 6-fold in the past 100 years, twice as fast as the human population, and is projected to double again before 2030. The bulk of water used in agriculture passes through the stomatal pore. Thus stomata represent an important target for manipulating crop performance. Significantly, stomatal responses are often delayed in the face of environmental fluctuations, especially of light. Improving water use efficiency (=amount of carbon fixed in photosynthesis/amount of water transpired) should be possible, without a cost to carbon assimilated in photosynthesis, if the speed of stomatal response can be enhanced.Stomatal movements are driven by solute transport - and consequent uptake/loss of water - across the cell membrane of the guard cells which surround the stomatal pore. Guard cells harbour ion channel proteins to facilitate cation flux for stomatal movement. Uniquely, the opening (or gating) of one class of plant ion channels is also sensitive to external K+ concentration. These channels are found in guard cells of tobacco, Vicia and Arabidopsis, in the latter encoded solely by the GORK gene. Increasing K+ outside moderates channel opening in parallel with the equilibrium voltage for K+ and affects whole-cell conductance. These channels are the main pathway for K+ efflux during stomatal closure, but their K+-sensitivity constrains K+ flux capacity, notably at higher external K+. Estimates based on recent modelling suggests that stomatal closure could be accelerated 3-fold with only a moderate increase in the flux capacity of these channels.The K+-sensitivity of the GORK channel is a property of the channel protein itself, which should facilitate manipulating K+ efflux capacity to accelerate stomatal closure. My laboratory has uncovered evidence that the K+-dependence of GORK gating is associated with its assembly in clusters. These assemblies require the the so-called 'voltage-sensor domains' (VSDs) of GORK to interact with one another. Movement of the VSDs is known to couple voltage to channel gating, so it is likely that interaction between VSDs provides a mechanism for cooperative self-regulation. I propose now to complete the analysis of GORK VSD interaction and the consequences for channel control and for stomatal movements. Regardless of the mechanism, it is clear that these discoveries offer the means to explore a unique and fundamental property of this class of K+ channels in plants and to manipulate channel activity, potentially enhancing the kinetics of stomatal closure and water use by the plant.
气孔是在植物叶子的不渗透角质层之间提供气体交换的孔隙。它们的打开和关闭是为了平衡光合作用二氧化碳进入的需要与减少水蒸气蒸腾和防止叶子干燥的需要。气孔蒸腾是水资源供应和农作物生产危机的核心,预计这一危机将在未来 20-30 年内展开:全球范围内,农业用水量在过去 100 年中增加了 6 倍,是人类用水速度的两倍人口,预计到 2030 年将再次翻倍。农业用水的大部分通过气孔。因此,气孔代表了操纵作物性能的重要目标。值得注意的是,面对环境波动,尤其是光的波动,气孔反应通常会延迟。如果可以提高气孔响应速度,则应该可以提高水分利用效率(=光合作用中固定的碳量/蒸腾的水量),而不需要光合作用中碳同化的成本。气孔运动是由溶质运输驱动的 - 和随后的水吸收/损失 - 穿过气孔周围的保卫细胞的细胞膜。保卫细胞含有离子通道蛋白,以促进气孔运动的阳离子通量。独特的是,一类植物离子通道的开放(或门控)也对外部 K+ 浓度敏感。这些通道存在于烟草、蚕豆和拟南芥的保卫细胞中,后者仅由 GORK 基因编码。增加外部 K+ 会与 K+ 的平衡电压同时缓和通道开放,并影响全细胞电导。这些通道是气孔关闭期间 K+ 流出的主要途径,但它们的 K+ 敏感性限制了 K+ 通量能力,特别是在较高的外部 K+ 情况下。基于最近模型的估计表明,只要这些通道的通量能力适度增加,气孔关闭就可以加速 3 倍。GORK 通道的 K+ 敏感性是通道蛋白本身的特性,这应该有助于操纵 K+加速气孔关闭的外排能力。我的实验室发现了证据表明 GORK 门控的 K+ 依赖性与其簇中的组装有关。这些组件需要 GORK 所谓的“电压传感器域”(VSD) 相互交互。众所周知,VSD 的运动会将电压耦合到通道选通,因此 VSD 之间的相互作用很可能提供了一种协作自我调节的机制。我现在建议完成 GORK VSD 相互作用及其对通道控制和气孔运动的影响的分析。无论机制如何,很明显,这些发现提供了探索植物中此类 K+ 通道的独特且基本特性并操纵通道活动的方法,从而有可能增强植物气孔关闭和水分利用的动力学。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
New Faces behind the Scenes.
幕后新面孔。
  • DOI:
    10.1104/pp.18.00140
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    7.4
  • 作者:
    Blatt MR
  • 通讯作者:
    Blatt MR
Plant Physiology Launches Associate Features Editors.
植物生理学推出副专题编辑。
  • DOI:
    10.1104/pp.18.00113
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    7.4
  • 作者:
    Blatt MR
  • 通讯作者:
    Blatt MR
Light-Driven Chloride Transport Kinetics of Halorhodopsin.
  • DOI:
    10.1016/j.bpj.2018.06.009
  • 发表时间:
    2018-07
  • 期刊:
  • 影响因子:
    3.4
  • 作者:
    Hasin Feroz;Bryan H Ferlez;Cécile Lefoulon;Tingwei Ren;Carol S. Baker;John P. Gajewski;D. J. Lugar;Sandeep Gaudana;P. Butler;Jonas Hühn;M. Lamping;W. Parak;J. Hibberd;C. Kerfeld;N. Smirnoff;M. Blatt;J. Golbeck;Manish Kumar
  • 通讯作者:
    Hasin Feroz;Bryan H Ferlez;Cécile Lefoulon;Tingwei Ren;Carol S. Baker;John P. Gajewski;D. J. Lugar;Sandeep Gaudana;P. Butler;Jonas Hühn;M. Lamping;W. Parak;J. Hibberd;C. Kerfeld;N. Smirnoff;M. Blatt;J. Golbeck;Manish Kumar
What can mechanistic models tell us about guard cells, photosynthesis, and water use efficiency?
  • DOI:
    10.1016/j.tplants.2021.08.010
  • 发表时间:
    2022-01-12
  • 期刊:
  • 影响因子:
    20.5
  • 作者:
    Blatt, Michael R.;Jezek, Mareike;Hills, Adrian
  • 通讯作者:
    Hills, Adrian
Evolutionary Conservation of ABA Signaling for Stomatal Closure
气孔关闭 ABA 信号的进化保守
  • DOI:
    10.1104/pp.16.01848
  • 发表时间:
    2017-06-01
  • 期刊:
  • 影响因子:
    7.4
  • 作者:
    Cai, Shengguan;Chen, Guang;Chen, Zhong-Hua
  • 通讯作者:
    Chen, Zhong-Hua
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Michael Blatt其他文献

The association of payer type on genicular radiofrequency neurotomy treatment outcomes: Results of a cross-sectional study
付款人类型与膝关节射频神经切断术治疗结果的关联:横断面研究的结果
  • DOI:
    10.1016/j.inpm.2024.100407
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Samantha Braun;Jason Mascoe;Marc Caragea;Tyler Woodworth;Tim Curtis;Michael Blatt;Cole W. Cheney;Todd K. Brown;Daniel Carson;Keith T. Kuo;Dustin J. Randall;Emily Y. Huang;Andrea Carefoot;Masaru Teramoto;Amanda N Cooper;Megan K. Mills;Taylor Burnham;Aaron M. Conger;Zachary L. McCormick
  • 通讯作者:
    Zachary L. McCormick

Michael Blatt的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Michael Blatt', 18)}}的其他基金

A SNARE-Aquaporin complex in stomatal hydraulics
气孔水力学中的 SNARE-水通道蛋白复合物
  • 批准号:
    BB/X013383/1
  • 财政年份:
    2024
  • 资助金额:
    $ 57.06万
  • 项目类别:
    Research Grant
Resolving CO2 regulation of the SLAC1 Cl- channel in guard cell ion transport and photosynthetic carbon assimilation
解决保卫细胞离子传输和光合碳同化中 SLAC1 Cl-通道的 CO2 调节
  • 批准号:
    BB/W001217/1
  • 财政年份:
    2022
  • 资助金额:
    $ 57.06万
  • 项目类别:
    Research Grant
Engineering the GORK K+ channel to enhance stomatal kinetics
改造 GORK K 通道以增强气孔动力学
  • 批准号:
    BB/T013508/1
  • 财政年份:
    2021
  • 资助金额:
    $ 57.06万
  • 项目类别:
    Research Grant
Engineering ion flux of the stomatal complex for enhanced photosynthesis and water use efficiency
工程气孔复合体的离子通量以增强光合作用和水分利用效率
  • 批准号:
    BB/T006153/1
  • 财政年份:
    2020
  • 资助金额:
    $ 57.06万
  • 项目类别:
    Research Grant
15 NSFBIO SAUR regulation of stomatal aperture
15 NSFBIO SAUR 气孔孔径调节
  • 批准号:
    BB/P011586/1
  • 财政年份:
    2017
  • 资助金额:
    $ 57.06万
  • 项目类别:
    Research Grant
Bilateral NSF/BIO-BBSRC Synthesis of Microcompartments in Plants for Enhanced Carbon Fixation
NSF/BIO-BBSRC 双边合成植物微室以增强碳固定
  • 批准号:
    BB/N01832X/1
  • 财政年份:
    2016
  • 资助金额:
    $ 57.06万
  • 项目类别:
    Research Grant
Dissecting a new and vital checkpoint in SNARE recycling and plant growth
剖析 SNARE 回收和植物生长中一个新的重要检查点
  • 批准号:
    BB/N006909/1
  • 财政年份:
    2016
  • 资助金额:
    $ 57.06万
  • 项目类别:
    Research Grant
Developing a synthetic approach to manipulating guard cell membrane transport and stomatal control
开发操纵保卫细胞膜运输和气孔控制的合成方法
  • 批准号:
    BB/L019205/1
  • 财政年份:
    2015
  • 资助金额:
    $ 57.06万
  • 项目类别:
    Research Grant
14-PSIL MAGIC: a multi-tiered approach to gaining increased carbon
14-PSIL MAGIC:增加碳的多层方法
  • 批准号:
    BB/M01133X/1
  • 财政年份:
    2014
  • 资助金额:
    $ 57.06万
  • 项目类别:
    Research Grant
Stomatal-based systems analysis of water use efficiency
基于气孔的水利用效率系统分析
  • 批准号:
    BB/L001276/1
  • 财政年份:
    2014
  • 资助金额:
    $ 57.06万
  • 项目类别:
    Research Grant

相似海外基金

Engineering the GORK K+ channel to enhance stomatal kinetics
改造 GORK K 通道以增强气孔动力学
  • 批准号:
    BB/T013508/1
  • 财政年份:
    2021
  • 资助金额:
    $ 57.06万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了