Exosome signalling and cellular reprogramming in the Drosophila reproductive system

果蝇生殖系统中的外泌体信号传导和细胞重编程

基本信息

  • 批准号:
    BB/K017462/1
  • 负责人:
  • 金额:
    $ 58.83万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2013
  • 资助国家:
    英国
  • 起止时间:
    2013 至 无数据
  • 项目状态:
    已结题

项目摘要

The critical event that takes place in the earliest stages of reproduction is the fertilisation of the egg by a single sperm within the female reproductive tract. However, for this event to happen, a number of hurdles have to be negotiated. Sperm need to be activated and mobilised after intercourse. The female also mounts an immune response to the foreign material in the ejaculate and molecules in the semen must block this. And finally, some components of semen in insects affect female behaviour to increase the number of offspring that a male can produce, and there is some evidence that this could also take place in mammals. In species as diverse as humans and fruit flies, males contain reproductive glands, like the prostate in men, which make the constituents of semen involved in these different processes. Surprisingly, we know little about the actual molecules that are responsible for these signals that pass between males and females when they mate, even though a better understanding might give us important new insights relevant to in vitro fertilisation (IVF) or contraception.Recently, it has been shown that human prostate cells release into semen small membrane-bound structures called exosomes that at least in a petri dish, can fuse to sperm and make them more mobile. In an independent study, we found that an organ in the fruit fly called the accessory gland, which secretes most of the fluid in fly semen, also makes exosomes that fuse with sperm inside the female reproductive tract after mating. These exosomes also seem to be important in affecting the female's behaviour, so that she becomes unreceptive to other males, who want to mate with her. Fortunately studies over the last 30 years in flies have revealed amazing similarities between flies and humans. About 70% of all the genes known to be involved in human disease are also found in flies and lots of the basic mechanisms by which human cells work were originally studied in flies or other simple organisms before being looked at in humans. The parallels between flies and humans suggest that if we find out how exosomes affect reproduction in flies, it is likely to give us important clues about how exosomes work in humans and other animals. The advantage we have in flies is that we can use a remarkable range of experimental tricks to mark the exosomes produced by the accessory gland in living flies, selectively block exosome secretion in this gland and remove individual components from the exosomes to test their function. As far as we are aware, this is a completely new approach and there are no other animals in which similar studies can currently be undertaken. We will try to work out whether there are different types of exosome, what they do in the female fly, how they are targeted to certain cells and which molecules within the exosome affect what the target cell does. Our findings could suggest important new research angles that will then need to be studied in human or animal reproduction. For example, if we identify a key molecule that is needed for exosomes to work, it may be possible to block that equivalent molecule in humans as part of a male contraception strategy or enhance its activity if the molecules is defective in some cases of male infertility. There will probably be additional more indirect benefits from our studies. For example, exosomes have been implicated in diseases, like cancer, where they may drive some of the early stages of tumour spreading, the most lethal aspect of this disease. Exosomes are also being developed as carriers for drugs that could be introduced into patients, and get into inaccessible organs like the brain. Our system in flies really provides the first opportunity in a living animal to address some of the basic questions that scientists working in all these areas, some of whom we work with, wish to answer, so that they can work out the best ways to design their experiments and use exosomes in medicine.
生殖最早阶段发生的关键事件是女性生殖道内单个精子使卵子受精。然而,要实现这一目标,必须克服许多障碍。性交后精子需要被激活和动员。女性还会对精液中的异物产生免疫反应,而精液中的分子必须阻止这种反应。最后,昆虫精液的某些成分会影响雌性的行为,以增加雄性可产生的后代数量,并且有一些证据表明这也可能发生在哺乳动物身上。在人类和果蝇等多种物种中,雄性都含有生殖腺,就像男性的前列腺一样,它们使精液的成分参与这些不同的过程。令人惊讶的是,我们对负责雄性和雌性交配时在雄性和雌性之间传递的这些信号的实际分子知之甚少,尽管更好的理解可能会给我们带来与体外受精(IVF)或避孕相关的重要新见解。研究表明,人类前列腺细胞会向精液中释放一种称为外泌体的小型膜结合结构,至少在培养皿中,这种结构可以与精子融合并使其更具流动性。在一项独立研究中,我们发现果蝇体内的一个称为辅助腺的器官,它分泌果蝇精液中的大部分液体,也会产生外泌体,在交配后与雌性生殖道内的精子融合。这些外泌体似乎对影响雌性的行为也很重要,因此她变得不接受其他想要与她交配的雄性。幸运的是,过去 30 年对果蝇的研究揭示了果蝇和人类之间惊人的相似之处。已知与人类疾病有关的所有基因中,约 70% 也在果蝇中被发现,并且人类细胞工作的许多基本机制最初是在果蝇或其他简单生物体中研究的,然后才在人类中进行研究。果蝇和人类之间的相似之处表明,如果我们发现外泌体如何影响果蝇的繁殖,很可能为我们提供关于外泌体如何在人类和其他动物中发挥作用的重要线索。我们在果蝇中的优势在于,我们可以使用一系列显着的实验技巧来标记活果蝇辅助腺产生的外泌体,选择性地阻断该腺体中的外泌体分泌,并从外泌体中去除单个成分以测试其功能。据我们所知,这是一种全新的方法,目前还没有其他动物可以进行类似的研究。我们将尝试弄清楚是否存在不同类型的外泌体、它们在雌性果蝇中的作用、它们如何靶向某些细胞以及外泌体中的哪些分子影响靶细胞的作用。我们的研究结果可能提出重要的新研究角度,然后需要在人类或动物生殖中进行研究。例如,如果我们确定了外泌体发挥作用所需的关键分子,那么作为男性避孕策略的一部分,就有可能在人体中阻断该等效分子,或者如果该分子在某些男性不育病例中存在缺陷,则可以增强其活性。我们的研究可能会带来额外的、更间接的好处。例如,外泌体与癌症等疾病有关,它们可能会驱动肿瘤扩散的一些早期阶段,这是这种疾病最致命的方面。外泌体也被开发为药物的载体,可以被引入患者体内,并进入大脑等难以接近的器官。我们的果蝇系统确实为活体动物提供了第一个机会来解决所有这些领域的科学家(其中一些与我们合作)希望回答的一些基本问题,以便他们能够找出设计的最佳方法他们的实验并将外泌体用于医学。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
BMP-regulated exosomes from Drosophila male reproductive glands reprogram female behavior.
来自果蝇雄性生殖腺的 BMP 调节的外泌体重新编程雌性行为。
  • DOI:
    http://dx.10.1083/jcb.201401072
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Corrigan L
  • 通讯作者:
    Corrigan L
Author Correction: GAPDH controls extracellular vesicle biogenesis and enhances the therapeutic potential of EV mediated siRNA delivery to the brain.
作者更正:GAPDH 控制细胞外囊泡的生物发生并增强 EV 介导的 siRNA 递送至大脑的治疗潜力。
  • DOI:
    http://dx.10.1038/s41467-021-27700-y
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    16.6
  • 作者:
    Dar GH
  • 通讯作者:
    Dar GH
GAPDH controls extracellular vesicle biogenesis and enhances the therapeutic potential of EV mediated siRNA delivery to the brain.
GAPDH 控制细胞外囊泡的生物发生并增强 EV 介导的 siRNA 递送至大脑的治疗潜力。
  • DOI:
    http://dx.10.1038/s41467-021-27056-3
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    16.6
  • 作者:
    Dar GH
  • 通讯作者:
    Dar GH
GAPDH controls extracellular vesicle biogenesis and enhances therapeutic potential of EVs in silencing the Huntingtin gene in mice via siRNA delivery
GAPDH 控制细胞外囊泡的生物合成,并通过 siRNA 传递增强 EV 沉默小鼠亨廷顿蛋白基因的治疗潜力
  • DOI:
    http://dx.10.1101/2020.01.09.899880
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Dar G
  • 通讯作者:
    Dar G
GAPDH controls extracellular vesicle biogenesis and enhances the therapeutic potential of EV mediated siRNA delivery to the brain.
GAPDH 控制细胞外囊泡的生物发生并增强 EV 介导的 siRNA 递送至大脑的治疗潜力。
  • DOI:
    http://dx.10.17863/cam.78320
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Dar G
  • 通讯作者:
    Dar G
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Clive Wilson其他文献

Glutamine Deprivation Regulates the Origin and Function of Cancer Cell Exosomes
谷氨酰胺剥夺调节癌细胞外泌体的起源和功能
  • DOI:
    10.1101/859447
  • 发表时间:
    2019-12-02
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Shih‐Jung Fan;Benjamin Kroeger;Pauline P Marie;E. Bridges;John D. Mason;K. McCormick;C. Zois;H. Sheldon;N. K. Alham;Errin Johnson;M. Ellis;M. I. Stefana;C. Mendes;S. Wainwright;C. Cunningham;F. Hamdy;J. Morris;A. Harris;Clive Wilson;D. Goberdhan
  • 通讯作者:
    D. Goberdhan
P-element-mediated enhancer detection: a versatile method to study development in Drosophila.
P 元件介导的增强子检测:研究果蝇发育的通用方法。
  • DOI:
    10.1101/gad.3.9.1288
  • 发表时间:
    1989-09-01
  • 期刊:
  • 影响因子:
    10.5
  • 作者:
    H. Bellen;C. O’Kane;Clive Wilson;U. Grossniklaus;Rebecca Kurth Pearson;W. Gehring
  • 通讯作者:
    W. Gehring
Cytoplasmic activated protein kinase Akt regulates lipid-droplet accumulation in Drosophila nurse cells
细胞质激活蛋白激酶 Akt 调节果蝇护士细胞中脂滴的积累
  • DOI:
  • 发表时间:
    2006
  • 期刊:
  • 影响因子:
    4.6
  • 作者:
    N. Vereshchagina;Clive Wilson
  • 通讯作者:
    Clive Wilson
Mating Induces Switch From Hormone-Dependent to – Independent Steroid Receptor-Mediated Growth in Drosophila Prostate-Like Cells
交配诱导果蝇前列腺样细胞从激素依赖性生长转变为非类固醇受体介导的生长
  • DOI:
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    A. Leiblich;Josephine E E U Hellberg;Aashika Sekar;C. Gandy;Siamak Redhai;M. Wainwright;Pauline P Marie;D. Goberdhan;F. Hamdy;Clive Wilson
  • 通讯作者:
    Clive Wilson
Amino Acid Sensing by mTORC1: Intracellular Transporters Mark the Spot
mTORC1 的氨基酸传感:细胞内转运蛋白是亮点
  • DOI:
    10.1016/j.cmet.2016.03.013
  • 发表时间:
    2016-04-12
  • 期刊:
  • 影响因子:
    29
  • 作者:
    D. Goberdhan;Clive Wilson;A. Harris
  • 通讯作者:
    A. Harris

Clive Wilson的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Clive Wilson', 18)}}的其他基金

Sex Peptide-dependent microcarrier signalling in reproduction
生殖中性肽依赖性微载体信号传导
  • 批准号:
    BB/W015455/1
  • 财政年份:
    2022
  • 资助金额:
    $ 58.83万
  • 项目类别:
    Research Grant
Regulation and activities of amyloidogenic proteins APP and TGFBI in physiological and pathological protein aggregation
淀粉样蛋白APP和TGFBI在生理和病理蛋白聚集中的调节和活性
  • 批准号:
    BB/W00707X/1
  • 财政年份:
    2022
  • 资助金额:
    $ 58.83万
  • 项目类别:
    Research Grant
Regulation of exosome heterogeneity and function
外泌体异质性和功能的调节
  • 批准号:
    BB/R004862/1
  • 财政年份:
    2018
  • 资助金额:
    $ 58.83万
  • 项目类别:
    Research Grant
Linking reproductive behaviour and dense core granule biogenesis in secondary cells of the Drosophila male reproductive system
将果蝇雄性生殖系统次生细胞的生殖行为与致密核心颗粒生物发生联系起来
  • 批准号:
    BB/N016300/1
  • 财政年份:
    2016
  • 资助金额:
    $ 58.83万
  • 项目类别:
    Research Grant
Regulation and functions of male-derived shed microvesicles in Drosophila reproduction
果蝇繁殖中雄性脱落微泡的调节和功能
  • 批准号:
    BB/L007096/1
  • 财政年份:
    2014
  • 资助金额:
    $ 58.83万
  • 项目类别:
    Research Grant

相似国自然基金

智能超表面辅助多天线通信网络低信令开销波束成形机制研究
  • 批准号:
    62301027
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于手机信令大数据的新冠疫情前后城市居民移动性规律变化研究
  • 批准号:
    42301210
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于信令大数据的轨迹计算与时空伴随分析技术研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    55 万元
  • 项目类别:
    面上项目
面向大规模移动信令轨迹的精细化检索与关联分析技术研究
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    57 万元
  • 项目类别:
    面上项目
多源城市时空数据驱动的流动人口爆发性出行特征挖掘及预测研究
  • 批准号:
    41901396
  • 批准年份:
    2019
  • 资助金额:
    21.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Novel mechano-signalling pathways at sites of cellular adhesion
细胞粘附位点的新型机械信号传导途径
  • 批准号:
    DP240101768
  • 财政年份:
    2024
  • 资助金额:
    $ 58.83万
  • 项目类别:
    Discovery Projects
Investigating neuroprotective strategies in genetic models of neurodegeneration
研究神经退行性变遗传模型中的神经保护策略
  • 批准号:
    478268
  • 财政年份:
    2023
  • 资助金额:
    $ 58.83万
  • 项目类别:
    Operating Grants
Micronuclei as integrators of cellular DNA damage responses
微核作为细胞 DNA 损伤反应的整合者
  • 批准号:
    488664
  • 财政年份:
    2023
  • 资助金额:
    $ 58.83万
  • 项目类别:
    Operating Grants
Integrated Imaging Tools for Intercellular Chemokine Signalling
用于细胞间趋化因子信号转导的集成成像工具
  • 批准号:
    10706896
  • 财政年份:
    2023
  • 资助金额:
    $ 58.83万
  • 项目类别:
Cellular Signalling and Cancer Metastasis
细胞信号传导和癌症转移
  • 批准号:
    CRC-2021-00161
  • 财政年份:
    2022
  • 资助金额:
    $ 58.83万
  • 项目类别:
    Canada Research Chairs
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了