The role of viral and cellular proteins in programmed -2 ribosomal frameshifting

病毒和细胞蛋白在程序性-2核糖体移码中的作用

基本信息

  • 批准号:
    BB/L000334/1
  • 负责人:
  • 金额:
    $ 41.83万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2013
  • 资助国家:
    英国
  • 起止时间:
    2013 至 无数据
  • 项目状态:
    已结题

项目摘要

Cellular proteins are encoded in DNA but synthesised by the ribosome through a messenger RNA (mRNA) intermediate, that is copied from DNA. The process of protein synthesis is called translation. The mRNA is fed into the ribosome which moves along until a triplet start signal in the mRNA is recognised. At this point, polypeptide synthesis starts, and as each subsequent triplet nucleotide "code" is decoded, one amino acid is added to a growing chain. The ribosome sticks to the triplet code (the reading frame) until it reaches a stop signal, at which point the completed protein is released. Some mRNAs, however, have embedded signals that instruct a proportion of the translating ribosomes to change reading frame, that is, to frameshift, at a defined position and to continue translation in an overlapping coding frame. Most examples of frameshifting come from viruses, although several have been found in cellular genes. Frameshift signals allow the synthesis of two proteins from a single mRNA and are most often used to attach a distinct C-terminus onto a protein. Many pathogenic viruses of animals and plants use frameshifting in the expression of virus proteins, including the retrovirus HIV and the SARS coronavirus. In almost all examples studied, the frameshifting event is a -1 frameshift (-1FS), that is, the ribosome moves backwards by one nucleotide on the mRNA. The mRNA signals that induce frameshifting are composed of two elements, a "slippery sequence", where the ribosome changes frame and, immediately downstream, a stable region of double-stranded RNA (originating through base-pairing of self-complementary regions) referred to as the stimulatory RNA. The elements are spaced such that as the ribosome is decoding the slippery sequence it encounters the stimulatory RNA, and it is thought that a failure to properly unwind the stimulatory RNA leads to a -1FS on the slippery sequence.Recently, a novel example of a -2 frameshift signal (-2FS) has been unearthed in the porcine reproductive and respiratory syndrome virus (PRRSV). This relative of the SARS coronavirus is an economically important pathogen of pigs responsible for estimated losses of $600 million per annum in the U.S. alone. The PRRSV -2FS frameshifting signal has three unusual features that set it apart from the many examples of -1FS. First, the ribosome moves two nucleotides backwards on the mRNA rather then one. Secondly, and very surprisingly, there is no obvious stimulatory RNA secondary structure. Computational and manual inspection of the region does not reveal any stable base-pairing downstream of the slippery sequence. Thirdly, we have established in unpublished work that the viral protein nsp1 is required for efficient -2FS. This is the first example of a role for a virus protein in frameshifting. The PRRSV signal thus represents a highly novel translation system that warrants further investigation. In this application, we propose a detailed characterisation of the signals for -2FS in PRRSV and an investigation into how the viral protein mediates its stimulatory effect. We will test whether the nsp1 protein and/or cellular proteins can bind directly to the RNA downstream of the slippery sequence and affect ribosome function, or whether such proteins function by binding directly to the ribosome. We will also ask whether ribosomes pause upon encounter of a -2FS signal, as is commonly observed at -1FS signals. We will also investigate the role of frameshifting in the context of the PRRSV itself. New knowledge gained from our analysis will be used to search databases for other -2FS signals in viral and cellular genes.Overall, the work will hopefully provide new information about the biology of gene expression and expand our knowledge of ribosome function and virus translation mechanisms. In the medium term, the work should help towards the development of vaccines and antiviral approaches to inhibit the replication of PRRSV.
细胞蛋白编码在DNA中,但由核糖体通过信使RNA(mRNA)中间体合成,并从DNA复制。蛋白质合成的过程称为翻译。 mRNA被喂入核糖体中,该核糖体一直移动,直到识别mRNA中的三重态启动信号。在这一点上,多肽合成开始,随后每个随后的三重核苷酸“代码”被解码时,将一个氨基酸添加到一个生长的链中。核糖体粘在三重态代码(读取框架)上,直到达到停止信号为止,此时释放完整的蛋白质。然而,一些mRNA嵌入了信号,这些信号指示了一定比例的翻译核糖体以更改阅读框架,也就是说,在自由度上,处于定义的位置并继续在重叠的编码框架中继续翻译。尽管在细胞基因中发现了一些,但大多数框架的例子都来自病毒。移码信号允许从单个mRNA合成两种蛋白质,并且通常用于将不同的C末端连接到蛋白质上。动物和植物的许多病原病毒在病毒蛋白的表达中使用帧速率,包括逆转录病毒HIV和SARS冠状病毒。在几乎所有研究的示例中,框架事件是-1框架(-1fs),即核糖体在mRNA上通过一个核苷酸向后移动。诱导帧速率的mRNA信号由两个元素组成,一个“滑序”,其中核糖体改变了框架,并立即在下游,是双链RNA的稳定区域(通过自我平衡区域的基础配置)的稳定区域作为刺激性RNA。这些元素的间隔使得核糖体正在解码较光滑的序列,它会遇到刺激性RNA,并且认为未能正确放松刺激性RNA的刺激性RNA会导致湿滑序列上的-1fs。 -2在猪繁殖和呼吸综合征病毒(PRRSV)中发现了 - 2移码信号(-2FS)。 SARS冠状病毒的亲戚是猪的经济重要病原体,仅在美国,估计每年估计损失6亿美元。 PRRSV -2FS帧汇总信号具有三个不同寻常的功能,使其与-1F的许多示例区分开来。首先,核糖体在mRNA上而不是一个将两个核苷酸向后移动。其次,非常令人惊讶的是,没有明显的刺激RNA二级结构。对该区域的计算和手动检查并未揭示湿滑序列下游的任何稳定的碱基对。第三,我们在未发表的工作中确定了病毒蛋白NSP1的高效-2FS所必需的。这是病毒蛋白在帧中中作用的第一个例子。因此,PRRSV信号代表了一个高度新颖的翻译系统,需要进一步研究。在此应用中,我们提出了PRRSV中-2F的信号的详细表征,并研究了病毒蛋白如何介导其刺激作用。我们将测试NSP1蛋白和/或细胞蛋白是否可以直接与湿序序列下游的RNA结合并影响核糖体功能,或者这种蛋白质是否通过直接与核糖体结合来起作用。我们还将询问核糖体在遇到-2FS信号时是否会暂停,就像在-1FS信号上通常观察到的那样。我们还将调查在PRRSV本身的背景下帧的作用。从我们的分析中获得的新知识将用于搜索数据库以在病毒和细胞基因中搜索其他-2FS信号。此外,这项工作将有望提供有关基因表达生物学的新信息,并扩展我们对核糖体功能和病毒翻译机制的了解。在中期,这项工作应有助于开发疫苗和抗病毒方法,以抑制PRRSV的复制。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
The use of duplex-specific nuclease in ribosome profiling and a user-friendly software package for Ribo-seq data analysis.
  • DOI:
    10.1261/rna.052548.115
  • 发表时间:
    2015-10
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Chung BY;Hardcastle TJ;Jones JD;Irigoyen N;Firth AE;Baulcombe DC;Brierley I
  • 通讯作者:
    Brierley I
Characterization of Ribosomal Frameshifting in Theiler's Murine Encephalomyelitis Virus.
  • DOI:
    10.1128/jvi.01043-15
  • 发表时间:
    2015-08
  • 期刊:
  • 影响因子:
    5.4
  • 作者:
    Finch LK;Ling R;Napthine S;Olspert A;Michiels T;Lardinois C;Bell S;Loughran G;Brierley I;Firth AE
  • 通讯作者:
    Firth AE
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ian Brierley其他文献

Ian Brierley的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Ian Brierley', 18)}}的其他基金

Probing the mechanism of action of Shiftless, a host restriction factor targeting programmed ribosomal frameshifting.
探究 Shiftless 的作用机制,这是一种针对程序化核糖体移码的宿主限制因子。
  • 批准号:
    BB/V000306/1
  • 财政年份:
    2021
  • 资助金额:
    $ 41.83万
  • 项目类别:
    Research Grant
Probing the translational dynamics of influenza virus infection.
探讨流感病毒感染的转化动力学。
  • 批准号:
    MR/M011747/1
  • 财政年份:
    2015
  • 资助金额:
    $ 41.83万
  • 项目类别:
    Research Grant
The role of mRNA secondary structures in programmed termination codon readthrough
mRNA二级结构在程序性终止密码子通读中的作用
  • 批准号:
    BB/G020272/1
  • 财政年份:
    2009
  • 资助金额:
    $ 41.83万
  • 项目类别:
    Research Grant
Structural and functional analysis of ribosome initiation and ribosomal frameshifting.
核糖体起始和核糖体移码的结构和功能分析。
  • 批准号:
    BB/G008205/1
  • 财政年份:
    2009
  • 资助金额:
    $ 41.83万
  • 项目类别:
    Research Grant
Cryo-EM analysis of ribosomal frameshifting
核糖体移码的冷冻电镜分析
  • 批准号:
    BB/D009499/1
  • 财政年份:
    2006
  • 资助金额:
    $ 41.83万
  • 项目类别:
    Research Grant
Molecular analysis of a novel translation 'termination-reinitiation' signal
新型翻译“终止-重新启动”信号的分子分析
  • 批准号:
    BB/C007034/1
  • 财政年份:
    2006
  • 资助金额:
    $ 41.83万
  • 项目类别:
    Research Grant

相似国自然基金

跨溶酶体途径的纳米气泡靶向运载RNA调控巨噬细胞极化在病毒性心肌炎的作用及机制研究
  • 批准号:
    82300571
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
人工智能辅助下探究单纯疱疹病毒性角膜炎中浆细胞样树突状细胞的作用及其机制研究
  • 批准号:
    82371023
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
细胞外囊泡在介导柯萨奇病毒B3非受体依赖感染及病毒性心肌炎的机制研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    54 万元
  • 项目类别:
    面上项目
CVB3通过Mfn-2调控线粒体相关内质网膜在病毒性心肌炎心肌细胞凋亡中的作用及机制研究
  • 批准号:
    82200393
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Role of Frizzled 5 in NK cell development and antiviral host immunity
Frizzled 5 在 NK 细胞发育和抗病毒宿主免疫中的作用
  • 批准号:
    10748776
  • 财政年份:
    2024
  • 资助金额:
    $ 41.83万
  • 项目类别:
Application of New Tools for Probing the Roles of Sphingolipids and Cholesterol in Influenza Virus Infection
应用新工具探索鞘脂和胆固醇在流感病毒感染中的作用
  • 批准号:
    10678459
  • 财政年份:
    2023
  • 资助金额:
    $ 41.83万
  • 项目类别:
Regulation of Cell Death in HIV Reservoirs
HIV 储存库细胞死亡的调控
  • 批准号:
    10674315
  • 财政年份:
    2023
  • 资助金额:
    $ 41.83万
  • 项目类别:
Elucidating single cell changes in neurogenic brain regions during HIV and cannabinoid exposure
阐明艾滋病毒和大麻素暴露期间神经源性大脑区域的单细胞变化
  • 批准号:
    10686685
  • 财政年份:
    2023
  • 资助金额:
    $ 41.83万
  • 项目类别:
Regulation of RNA sensing and viral restriction by RNA structures
RNA 结构对 RNA 传感和病毒限制的调节
  • 批准号:
    10667802
  • 财政年份:
    2023
  • 资助金额:
    $ 41.83万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了