Temporal Co-regulation of Pathogenesis in Phytophthora

疫霉发病机制的时间协同调控

基本信息

  • 批准号:
    BB/J016500/1
  • 负责人:
  • 金额:
    $ 37.63万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2013
  • 资助国家:
    英国
  • 起止时间:
    2013 至 无数据
  • 项目状态:
    已结题

项目摘要

How do plant pathogens, such as the potato late blight pathogen, Phytophthora infestans, regulate the timing of their different infection stages, and which genes are required at specific stages of plant infection? Despite the enormous cost and impact of Phytophthora diseases, we know little about how this group of pathogens regulate and coordinate specific stages of plant infection that culminate in disease development.Late blight, caused by P. infestans, is the most devastating disease of potato, the third most important food crop globally. The very broad host range pathogen P. capsici is a major threat to vegetables, against which (durable) resistance is not available in most crops. Crop plant diseases caused by Phytophthora pathogens are thus a threat to global food security. The situation in Europe is compounded by legislation banning or restricting some chemicals that farmers rely on to prevent Phytophthora diseases. Changes in pathogen populations, coupled with the need to produce more food with a diminished environmental footprint, means that new avenues of disease control must be sought. In addition to P. infestans and P. capsici, more than 120 species of Phytophthora have been characterized, which collectively cause significant disease on almost all dicot crops. Some are limited in host range, and the resources for host genetics and genomics provide novel opportunities to identify and harness natural disease resistance. However, others, such as P. ramorum and P. kernoviae, are emerging as threats to natural ecosystems, infecting a broad range of tree and shrub species with which they have not co-evolved. To combat these, breeding for resistance is not a viable strategy. A deep understanding of Phytophthora infection biology is required to provide novel, next generation targets for highly specific and environmentally benign chemical control, and to identify new avenues that lead to disease resistance in plant hosts.In order for it to be a successful pathogen, Phytophthora must grow within living plant tissue and then spread to new plants by producing spores. This requires the formation of different pathogen infection structures, which involves the action of many different genes, many of which are only active at these specific stages of infection. The DNA sequences of P. infestans and P. capsici have revealed hundreds (over 500) of candidate virulence factors that are transferred into plant cells to promote disease. These pathogens also have many other potential virulence proteins about which little is known. By identifying which of these candidate virulence genes are most active during specific infection of plants, this project will allow us, for example, to identify how Phytophthora coordinates its gene expression to form specialised infection structures, and what nutrients it obtains from its host plants. However, the main focus of this project is to identify the 'switches' that initiate and regulate expression of the large numbers of genes required for infection. We will search for those regulatory switches that are common to P. infestans and P. capsici, as essential and conserved are likely to be more promising for later development of broadly applicable disease control strategies. As these are likely to be the central controls of Phytophthora disease development, it is likely that disruption of their function will also severely compromise the ability of Phytophthora to cause plant disease. Gene expression underlying specific stages of disease development could be exploited through identification of crop plant traits that interfere with, or otherwise reduce, production of Phytophthora virulence factors. Alternatively, as we are seeking the regulatory components that are common to both narrow and broad host range Phytophthora species, these may be attractive targets for development of new chemical control agents that may also be active against other oomycete plant pathogens.
植物病原体(例如马铃薯晚病病原体,植物疫霉菌Infestans)如何调节其不同感染阶段的时间,以及在植物感染的特定阶段需要哪些基因?尽管植物疾病的成本和影响很大,但我们对这组病原体如何调节和协调植物感染的特定阶段,这些阶段是在疾病发育中达到最终导致的。非常广泛的宿主范围病原体P. Capsici是对蔬菜的主要威胁,在大多数农作物中不可用(耐用)耐药性。因此,由疫霉病原体引起的作物植物疾病是对全球粮食安全的威胁。欧洲的局势通过禁止或限制农民依靠以防止植物疾病的某些化学物质的立法更加复杂。病原体种群的变化,再加上需要减少环境足迹的更多食物,这意味着必须寻求新的疾病控制途径。除了炎症假单胞菌和辣椒假单胞菌外,还表征了120多种phytophthora,它们几乎在所有双子座作物上都会统一引起重大疾病。一些人的宿主范围有限,宿主遗传学和基因组学的资源为识别和利用自然疾病的抗性提供了新的机会。但是,其他人,例如Ramorum和Kernoviae,正成为对自然生态系统的威胁,感染了它们没有共同进化的广泛的树木和灌木。为了对抗这些,抵抗的繁殖不是可行的策略。需要深入了解植物菌感染生物学才能为高度特异性和环境良性化学控制提供新颖的下一代目标,并确定导致植物宿主疾病抗病性的新途径。在为了使其成为成功的病原体,植物植物必须在生物组织内生长,然后通过生产新植物扩散到新植物中。这需要形成不同病原体感染结构,这涉及许多不同基因的作​​用,其中许多基因仅在这些特定的感染阶段都活跃。 Infestans和P. capsici的DNA序列揭示了数百种(超过500个)候选毒力因子被转移到植物细胞中以促进疾病。这些病原体还具有许多其他潜在的毒力蛋白,鲜为人知。通过识别哪些候选毒力基因在植物的特异性感染中最活跃,例如,该项目将使我们能够确定植物疫霉的基因表达方式如何形成特殊的感染结构,以及从其宿主植物中获得的营养。但是,该项目的主要重点是确定启动和调节感染所需的大量基因表达的“开关”。我们将搜索那些在P. Infestans和Capsici常见的监管开关,因为必不可少的和保守的开关可能更有希望,以便以后发展广泛适用的疾病控制策略。由于这些可能是疫霉病发展的中心控制,因此其功能的破坏很可能会严重损害植物疫霉引起植物性疾病的能力。可以通过鉴定干涉或减少植物疫毒性因子产生的作物植物特征来利用疾病发育特定阶段的基因表达。另外,由于我们正在寻求狭窄和广泛的宿主范围植物植物物种共有的调节组件,因此这些可能是开发新化学控制剂的有吸引力的靶标,这些目标也可能与其他Oomycete植物病原体相对活跃。

项目成果

期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Devastating intimacy: the cell biology of plant-Phytophthora interactions.
  • DOI:
    10.1111/nph.16650
  • 发表时间:
    2020-10
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Boevink PC;Birch PRJ;Turnbull D;Whisson SC
  • 通讯作者:
    Whisson SC
High-efficiency green management of potato late blight by a self-assembled multicomponent nano-bioprotectant.
  • DOI:
    10.1038/s41467-023-41447-8
  • 发表时间:
    2023-09-12
  • 期刊:
  • 影响因子:
    16.6
  • 作者:
    Wang, Yuxi;Li, Mingshan;Ying, Jiahan;Shen, Jie;Dou, Daolong;Yin, Meizhen;Whisson, Stephen C.;Birch, Paul R. J.;Yan, Shuo;Wang, Xiaodan
  • 通讯作者:
    Wang, Xiaodan
The Phytophthora infestans Haustorium Is a Site for Secretion of Diverse Classes of Infection-Associated Proteins.
  • DOI:
    10.1128/mbio.01216-18
  • 发表时间:
    2018-08-28
  • 期刊:
  • 影响因子:
    6.4
  • 作者:
    Wang S;Welsh L;Thorpe P;Whisson SC;Boevink PC;Birch PRJ
  • 通讯作者:
    Birch PRJ
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Stephen Whisson其他文献

Stephen Whisson的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Stephen Whisson', 18)}}的其他基金

Berberine bridge enzyme-like proteins as key virulence factors in plant pathogens
小檗碱桥酶样蛋白作为植物病原体的关键毒力因子
  • 批准号:
    BB/Y003977/1
  • 财政年份:
    2024
  • 资助金额:
    $ 37.63万
  • 项目类别:
    Research Grant
Phosphatidylinositides defining effector protein delivery in Phytophthora
磷脂酰肌醇定义了疫霉菌中效应蛋白的传递
  • 批准号:
    BB/X015920/1
  • 财政年份:
    2023
  • 资助金额:
    $ 37.63万
  • 项目类别:
    Research Grant
New Enzymatic Virulence Factors In Phytophthora Infestans
马铃薯晚疫病菌中新的酶促毒力因子
  • 批准号:
    BB/V000675/1
  • 财政年份:
    2021
  • 资助金额:
    $ 37.63万
  • 项目类别:
    Research Grant

相似国自然基金

基于CO2矿化利用固碳的生活源污染土加固机理研究
  • 批准号:
    42372309
  • 批准年份:
    2023
  • 资助金额:
    53 万元
  • 项目类别:
    面上项目
基于转移氢化反应的CO2捕集与利用一体化新方法
  • 批准号:
    52376100
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
微纳米气泡可控机制及其强化CO2捕获的机理研究
  • 批准号:
    22308291
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
固废源仿生碳质材料用于CO2强化捕集与协同转化制备多元复合柔性电极研究
  • 批准号:
    52376216
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
CO2植被生理强迫下复合高温干旱演变机制及其对植被生产力影响研究
  • 批准号:
    42301106
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Co-Regulation of Striatal Dopamine and Acetylcholine During Flexible Learning
灵活学习期间纹状体多巴胺和乙酰胆碱的共同调节
  • 批准号:
    10296417
  • 财政年份:
    2021
  • 资助金额:
    $ 37.63万
  • 项目类别:
Co-Regulation of Striatal Dopamine and Acetylcholine During Flexible Learning
灵活学习过程中纹状体多巴胺和乙酰胆碱的共同调节
  • 批准号:
    10641779
  • 财政年份:
    2021
  • 资助金额:
    $ 37.63万
  • 项目类别:
Co-Regulation of Striatal Dopamine and Acetylcholine During Flexible Learning
灵活学习过程中纹状体多巴胺和乙酰胆碱的共同调节
  • 批准号:
    10453579
  • 财政年份:
    2021
  • 资助金额:
    $ 37.63万
  • 项目类别:
Phospholipase D1 Mediated Early Events Affecting Synaptic Dysfunction in Alzheimer's Disease and Related Dementia
磷脂酶 D1 介导影响阿尔茨海默病和相关痴呆症突触功能障碍的早期事件
  • 批准号:
    10386859
  • 财政年份:
    2020
  • 资助金额:
    $ 37.63万
  • 项目类别:
Phospholipase D1 Mediated Early Events Affecting Synaptic Dysfunction in Alzheimer's Disease and Related Dementia
磷脂酶 D1 介导影响阿尔茨海默病和相关痴呆症突触功能障碍的早期事件
  • 批准号:
    9974025
  • 财政年份:
    2020
  • 资助金额:
    $ 37.63万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了