Temporal Co-regulation of Pathogenesis in Phytophthora
疫霉发病机制的时间协同调控
基本信息
- 批准号:BB/J016500/1
- 负责人:
- 金额:$ 37.63万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2013
- 资助国家:英国
- 起止时间:2013 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
How do plant pathogens, such as the potato late blight pathogen, Phytophthora infestans, regulate the timing of their different infection stages, and which genes are required at specific stages of plant infection? Despite the enormous cost and impact of Phytophthora diseases, we know little about how this group of pathogens regulate and coordinate specific stages of plant infection that culminate in disease development.Late blight, caused by P. infestans, is the most devastating disease of potato, the third most important food crop globally. The very broad host range pathogen P. capsici is a major threat to vegetables, against which (durable) resistance is not available in most crops. Crop plant diseases caused by Phytophthora pathogens are thus a threat to global food security. The situation in Europe is compounded by legislation banning or restricting some chemicals that farmers rely on to prevent Phytophthora diseases. Changes in pathogen populations, coupled with the need to produce more food with a diminished environmental footprint, means that new avenues of disease control must be sought. In addition to P. infestans and P. capsici, more than 120 species of Phytophthora have been characterized, which collectively cause significant disease on almost all dicot crops. Some are limited in host range, and the resources for host genetics and genomics provide novel opportunities to identify and harness natural disease resistance. However, others, such as P. ramorum and P. kernoviae, are emerging as threats to natural ecosystems, infecting a broad range of tree and shrub species with which they have not co-evolved. To combat these, breeding for resistance is not a viable strategy. A deep understanding of Phytophthora infection biology is required to provide novel, next generation targets for highly specific and environmentally benign chemical control, and to identify new avenues that lead to disease resistance in plant hosts.In order for it to be a successful pathogen, Phytophthora must grow within living plant tissue and then spread to new plants by producing spores. This requires the formation of different pathogen infection structures, which involves the action of many different genes, many of which are only active at these specific stages of infection. The DNA sequences of P. infestans and P. capsici have revealed hundreds (over 500) of candidate virulence factors that are transferred into plant cells to promote disease. These pathogens also have many other potential virulence proteins about which little is known. By identifying which of these candidate virulence genes are most active during specific infection of plants, this project will allow us, for example, to identify how Phytophthora coordinates its gene expression to form specialised infection structures, and what nutrients it obtains from its host plants. However, the main focus of this project is to identify the 'switches' that initiate and regulate expression of the large numbers of genes required for infection. We will search for those regulatory switches that are common to P. infestans and P. capsici, as essential and conserved are likely to be more promising for later development of broadly applicable disease control strategies. As these are likely to be the central controls of Phytophthora disease development, it is likely that disruption of their function will also severely compromise the ability of Phytophthora to cause plant disease. Gene expression underlying specific stages of disease development could be exploited through identification of crop plant traits that interfere with, or otherwise reduce, production of Phytophthora virulence factors. Alternatively, as we are seeking the regulatory components that are common to both narrow and broad host range Phytophthora species, these may be attractive targets for development of new chemical control agents that may also be active against other oomycete plant pathogens.
植物病原体(例如马铃薯晚疫病病原体、致病疫霉)如何调节其不同感染阶段的时间,以及植物感染的特定阶段需要哪些基因?尽管疫霉病害造成了巨大的损失和影响,但我们对这组病原体如何调节和协调最终导致疾病发展的植物感染的特定阶段知之甚少。由晚疫病菌引起的晚疫病是马铃薯最具破坏性的疾病,全球第三重要的粮食作物。宿主范围非常广泛的病原体辣椒疫病菌是对蔬菜的主要威胁,大多数作物不具备(持久)抗性。因此,由疫霉病原体引起的农作物病害对全球粮食安全构成威胁。欧洲的情况因立法禁止或限制农民用来预防疫霉病的某些化学品而变得更加复杂。病原体种群的变化,加上生产更多粮食并减少环境足迹的需要,意味着必须寻求新的疾病控制途径。除了致病疫霉和辣椒疫病菌之外,还对 120 多种疫霉属进行了鉴定,它们共同对几乎所有双子叶作物造成严重疾病。有些宿主范围有限,宿主遗传学和基因组学资源为识别和利用自然抗病性提供了新的机会。然而,其他物种,如 P. ramorum 和 P. kernoviae,正在对自然生态系统构成威胁,感染大量未与它们共同进化的树木和灌木物种。为了对抗这些问题,培育抗性并不是一个可行的策略。需要对疫霉属感染生物学有深入的了解,才能为高度特异性和环境友好的化学控制提供新的下一代目标,并确定导致植物宿主抗病性的新途径。为了使其成为一种成功的病原体,疫霉属必须在活的植物组织内生长,然后通过产生孢子传播到新的植物中。这需要形成不同的病原体感染结构,其中涉及许多不同基因的作用,其中许多基因仅在感染的这些特定阶段才活跃。 P. infestans 和 P. capsici 的 DNA 序列揭示了数百种(超过 500 种)候选毒力因子,这些因子被转移到植物细胞中以促进疾病。这些病原体还具有许多其他潜在的毒力蛋白,但人们对此知之甚少。通过确定这些候选毒力基因中哪些在植物的特定感染过程中最活跃,该项目将使我们能够确定疫霉属如何协调其基因表达以形成专门的感染结构,以及它从宿主植物中获得哪些营养。然而,该项目的主要重点是确定启动和调节感染所需大量基因表达的“开关”。我们将寻找致病疫霉和辣椒疫霉所共有的那些调控开关,因为必要且保守的调控开关可能更有希望用于以后开发广泛适用的疾病控制策略。由于这些可能是疫霉属疾病发展的中心控制,因此它们功能的破坏也可能严重损害疫霉属引起植物病害的能力。通过鉴定干扰或减少疫霉毒力因子产生的作物植物性状,可以利用疾病发展特定阶段的基因表达。或者,当我们正在寻找窄宿主范围和宽宿主范围疫霉属物种共有的调节成分时,这些可能是开发新化学防治剂的有吸引力的目标,这些化学防治剂也可能对其他卵菌植物病原体具有活性。
项目成果
期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Devastating intimacy: the cell biology of plant-Phytophthora interactions.
- DOI:10.1111/nph.16650
- 发表时间:2020-10
- 期刊:
- 影响因子:0
- 作者:Boevink PC;Birch PRJ;Turnbull D;Whisson SC
- 通讯作者:Whisson SC
High-efficiency green management of potato late blight by a self-assembled multicomponent nano-bioprotectant.
- DOI:10.1038/s41467-023-41447-8
- 发表时间:2023-09-12
- 期刊:
- 影响因子:16.6
- 作者:Wang, Yuxi;Li, Mingshan;Ying, Jiahan;Shen, Jie;Dou, Daolong;Yin, Meizhen;Whisson, Stephen C.;Birch, Paul R. J.;Yan, Shuo;Wang, Xiaodan
- 通讯作者:Wang, Xiaodan
The Phytophthora infestans Haustorium Is a Site for Secretion of Diverse Classes of Infection-Associated Proteins.
- DOI:10.1128/mbio.01216-18
- 发表时间:2018-08-28
- 期刊:
- 影响因子:6.4
- 作者:Wang S;Welsh L;Thorpe P;Whisson SC;Boevink PC;Birch PRJ
- 通讯作者:Birch PRJ
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Stephen Whisson其他文献
Stephen Whisson的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Stephen Whisson', 18)}}的其他基金
Berberine bridge enzyme-like proteins as key virulence factors in plant pathogens
小檗碱桥酶样蛋白作为植物病原体的关键毒力因子
- 批准号:
BB/Y003977/1 - 财政年份:2024
- 资助金额:
$ 37.63万 - 项目类别:
Research Grant
Phosphatidylinositides defining effector protein delivery in Phytophthora
磷脂酰肌醇定义了疫霉菌中效应蛋白的传递
- 批准号:
BB/X015920/1 - 财政年份:2023
- 资助金额:
$ 37.63万 - 项目类别:
Research Grant
New Enzymatic Virulence Factors In Phytophthora Infestans
马铃薯晚疫病菌中新的酶促毒力因子
- 批准号:
BB/V000675/1 - 财政年份:2021
- 资助金额:
$ 37.63万 - 项目类别:
Research Grant
相似国自然基金
钴氢催化不饱和烃的不对称氢羰基化反应研究
- 批准号:22301073
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于健康和生态效益的大气污染物和CO2协同调控路径优化
- 批准号:42307131
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
催化CO2加氢为低碳烯烃的介孔碳限域Fe系催化剂的可控构筑与调控机制研究
- 批准号:22378345
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
碳纳米管限域的钴基费托合成催化剂的设计及其催化性能研究
- 批准号:22362030
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
粉煤灰基发泡地质聚合物矿化封存CO2机制研究
- 批准号:52304196
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Co-Regulation of Striatal Dopamine and Acetylcholine During Flexible Learning
灵活学习期间纹状体多巴胺和乙酰胆碱的共同调节
- 批准号:
10296417 - 财政年份:2021
- 资助金额:
$ 37.63万 - 项目类别:
Co-Regulation of Striatal Dopamine and Acetylcholine During Flexible Learning
灵活学习过程中纹状体多巴胺和乙酰胆碱的共同调节
- 批准号:
10641779 - 财政年份:2021
- 资助金额:
$ 37.63万 - 项目类别:
Co-Regulation of Striatal Dopamine and Acetylcholine During Flexible Learning
灵活学习过程中纹状体多巴胺和乙酰胆碱的共同调节
- 批准号:
10453579 - 财政年份:2021
- 资助金额:
$ 37.63万 - 项目类别:
Phospholipase D1 Mediated Early Events Affecting Synaptic Dysfunction in Alzheimer's Disease and Related Dementia
磷脂酶 D1 介导影响阿尔茨海默病和相关痴呆症突触功能障碍的早期事件
- 批准号:
10386859 - 财政年份:2020
- 资助金额:
$ 37.63万 - 项目类别:
Phospholipase D1 Mediated Early Events Affecting Synaptic Dysfunction in Alzheimer's Disease and Related Dementia
磷脂酶 D1 介导影响阿尔茨海默病和相关痴呆症突触功能障碍的早期事件
- 批准号:
9974025 - 财政年份:2020
- 资助金额:
$ 37.63万 - 项目类别: