Recombination and the clearance of replicative blocks - to bypass or not to bypass?
重组和复制块的清除——绕过还是不绕过?
基本信息
- 批准号:BB/J014826/1
- 负责人:
- 金额:$ 40.73万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2013
- 资助国家:英国
- 起止时间:2013 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The ability of a cell to form two new daughter cells allows organisms to grow and reproduce. This process requires the copying of vast amounts of DNA so that each daughter receives an accurate copy of all the genetic information required for survival. Because of the importance of generating accurate copies of the DNA, organisms have evolved very complex DNA replication machines that reduce the chances of mistakes being made. Unfortunately, we now know that many obstacles are encountered by these replication machines that, if not overcome, can cause mistakes in the copying process. Such mistakes can lead to errors in the genetic information that can have fatal consequences.Proteins that coat the DNA form frequent obstacles to the DNA copying machinery. These proteins are essential in all organisms for maintaining, reading and packing the genetic information, and so cannot be avoided. Although the DNA replication machinery can successfully push off most of these proteins from the DNA to be copied, the sheer number of proteins bound to the DNA mean that occasionally the copying process is stopped in its tracks. However, a specific class of enzymes can repair and restart broken down DNA replication machines. It is clear that these recombination enzymes can help to copy DNA that is bound by proteins but how they do so remains unclear. One proposal is that if a DNA replication machine becomes blocked by a protein then recombination enzymes can restart DNA replication on the other side of the protein block. This pathway would skip over the block, allowing copying to continue, but would also result in genes near the protein block not being copied. Consequently the involvement of recombination enzymes could be seen as harmful, resulting in failure to copy all the genetic information needed by the two daughter cells to survive. Alternatively, we have proposed that recombination enzymes might simply restart DNA replication near to where it initially came to a halt. This might give the DNA replication machinery a second chance to push the blocking protein off the DNA and continue to copy all of the genetic information. Such a process might therefore provide a mechanism to ensure accurate copying of DNA coated with proteins.We will use the model bacterium E. coli to determine the roles of recombination enzymes in copying DNA coated with proteins. We know a great deal about the basic mechanisms of both DNA replication and recombination in E. coli, allowing us to analyse how these two very complicated processes interact. We will determine the mechanisms by which recombination enzymes can help DNA replication machines to move through protein blocks. We will also establish what dictates the balance between accurate and inaccurate recombination mechanisms to understand when such processes might generate potentially very harmful changes to the genetic material.The conflict between the need to copy DNA and the need to have proteins bound to the DNA is one that all organisms must somehow resolve. This work will address therefore exactly what drives the accumulation of mutations within genes and what mechanisms help to minimise this accumulation. Acquisition of mutations in the genetic material is the driving force of evolution but such mutations are frequently harmful rather than beneficial and so must be kept in check. This is illustrated by the importance of mutations in the acquisition of human genetic disorders and the development of cancer. Understanding fundamental mechanisms of DNA replication and recombination in E. coli has greatly advanced our knowledge of genetic stability in more complex organisms such as ourselves. We are now in a position to use E. coli to address the interplay between these critical processes, an interplay that is central to understanding how genes are copied in as accurate a manner as possible.
细胞形成两个新子细胞的能力使生物可以生长和繁殖。此过程需要复制大量DNA,以便每个女儿都能获得生存所需的所有遗传信息的准确副本。由于生成DNA准确拷贝的重要性,生物已经进化出非常复杂的DNA复制机,以减少犯错的机会。不幸的是,我们现在知道这些复制机遇到了许多障碍,如果没有克服,这些障碍可能会在复制过程中造成错误。这样的错误可能会导致遗传信息的错误,这些信息可能会带来致命的后果。蛋白质覆盖DNA的蛋白质频繁地构成DNA复制机械的障碍物。这些蛋白质对于维持,读取和包装遗传信息至关重要,因此无法避免。尽管DNA复制机制可以成功地从DNA中取出大多数这些蛋白质,但与DNA结合的蛋白质数量的庞大数量意味着偶尔在其轨道中停止复制过程。但是,一类特定的酶可以修复并重新启动分解的DNA复制机。显然,这些重组酶可以帮助复制受蛋白质绑定的DNA,但它们的作用仍然不清楚。一个建议是,如果DNA复制机被蛋白质阻塞,那么重组酶可以在蛋白质块的另一侧重新启动DNA复制。该途径会跳过块,允许复制继续,但也会导致未复制蛋白质块附近的基因。因此,重组酶的参与可以看作是有害的,导致未能复制两个子细胞所需的所有遗传信息才能生存。另外,我们提出,重组酶可能只是重新启动DNA复制,靠近最初停止的位置。这可能会使DNA复制机械是第二次机会,将阻塞蛋白从DNA推出并继续复制所有遗传信息。因此,这样的过程可能会提供一种机制,以确保精确复制涂有蛋白质的DNA。我们将使用模型细菌大肠杆菌来确定重组酶在复制涂有蛋白质的DNA中的作用。我们对大肠杆菌中DNA复制和重组的基本机制了解很多,从而使我们能够分析这两个非常复杂的过程如何相互作用。我们将确定重组酶可以帮助DNA复制机通过蛋白质块移动的机制。我们还将确定什么决定了准确和不准确的重组机制之间的平衡,以了解何时可能会对遗传物质产生潜在的非常有害的变化。复制DNA的需求与将蛋白质绑定到DNA的需求之间的冲突是所有生物体必须以某种方式解决的所有生物体的冲突。因此,这项工作将准确地解决什么推动基因内突变积累的原因,以及哪些机制有助于最大程度地减少这种积累。遗传物质中突变的获取是进化的驱动力,但这种突变通常是有害的,而不是有益的,因此必须保留。突变在获得人类遗传疾病和癌症发展中的重要性来说明这一点。理解大肠杆菌中DNA复制和重组的基本机制已极大地提高了我们对更复杂的生物(例如我们自身)的遗传稳定性的了解。现在,我们可以使用大肠杆菌来解决这些关键过程之间的相互作用,这是了解如何以尽可能准确的方式复制基因的至关重要的相互作用。
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Inhibiting translation elongation can aid genome duplication in Escherichia coli.
- DOI:10.1093/nar/gkw1254
- 发表时间:2017-03-17
- 期刊:
- 影响因子:14.9
- 作者:Myka KK;Hawkins M;Syeda AH;Gupta MK;Meharg C;Dillingham MS;Savery NJ;Lloyd RG;McGlynn P
- 通讯作者:McGlynn P
Recombination and replication.
重组和复制。
- DOI:10.1101/cshperspect.a016550
- 发表时间:2014
- 期刊:
- 影响因子:7.2
- 作者:Syeda AH
- 通讯作者:Syeda AH
The Balance between Recombination Enzymes and Accessory Replicative Helicases in Facilitating Genome Duplication.
- DOI:10.3390/genes7080042
- 发表时间:2016-07-29
- 期刊:
- 影响因子:3.5
- 作者:Syeda AH;Atkinson J;Lloyd RG;McGlynn P
- 通讯作者:McGlynn P
共 3 条
- 1
Peter McGlynn其他文献
Dynamical signatures of freezing: stable fluids, metastable fluids, and crystals.
冻结的动力学特征:稳定流体、亚稳态流体和晶体。
- DOI:
- 发表时间:20062006
- 期刊:
- 影响因子:0
- 作者:Stephen R. Williams;Peter McGlynn;G. Bryant;I. Snook;W. van MegenStephen R. Williams;Peter McGlynn;G. Bryant;I. Snook;W. van Megen
- 通讯作者:W. van MegenW. van Megen
共 1 条
- 1
Peter McGlynn的其他基金
Speeding and stuttering: analysing the dynamics of DNA replication at the single molecule level
加速和口吃:在单分子水平上分析 DNA 复制的动态
- 批准号:BB/K00168X/1BB/K00168X/1
- 财政年份:2013
- 资助金额:$ 40.73万$ 40.73万
- 项目类别:Research GrantResearch Grant
Why does transcription present a major barrier to genome duplication?
为什么转录是基因组复制的主要障碍?
- 批准号:BB/I001859/2BB/I001859/2
- 财政年份:2012
- 资助金额:$ 40.73万$ 40.73万
- 项目类别:Research GrantResearch Grant
Why does transcription present a major barrier to genome duplication?
为什么转录是基因组复制的主要障碍?
- 批准号:BB/I001859/1BB/I001859/1
- 财政年份:2011
- 资助金额:$ 40.73万$ 40.73万
- 项目类别:Research GrantResearch Grant
Avoiding replication trainwrecks - are accessory replicative helicases needed to underpin replication of protein-bound DNA?
避免复制失败——是否需要辅助复制解旋酶来支持蛋白质结合 DNA 的复制?
- 批准号:BB/G005915/1BB/G005915/1
- 财政年份:2009
- 资助金额:$ 40.73万$ 40.73万
- 项目类别:Research GrantResearch Grant
Conflicts between DNA replication fork progression and transcriptional regulation
DNA复制叉进程与转录调控之间的冲突
- 批准号:BB/C008316/1BB/C008316/1
- 财政年份:2006
- 资助金额:$ 40.73万$ 40.73万
- 项目类别:Research GrantResearch Grant
High performance motoring - replication fork movement in a complex environment
高性能驾驶 - 在复杂环境中复制叉子运动
- 批准号:G0501626/1G0501626/1
- 财政年份:2006
- 资助金额:$ 40.73万$ 40.73万
- 项目类别:Research GrantResearch Grant
相似国自然基金
ABT-263清除衰老细胞抑制子宫肌瘤生长的机制研究
- 批准号:82301837
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
心肌梗死修复后期TGF-β2通过YAP/TAZ下调LYVE-1表达引起免疫细胞经淋巴管清除障碍的作用与机制研究
- 批准号:82370259
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
磷脂酰乙醇胺代谢紊乱介导自噬相关磷酸化α-syn清除异常在术后认知恢复延迟中作用及机制
- 批准号:82301359
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
脾脏巨噬细胞功能失调介导血源性α-synuclein异构体清除障碍在PD发病中的机制研究
- 批准号:82301430
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
构建级联靶向响应性仿DNase金纳米花药物用于清除耐药菌生物被膜
- 批准号:32360238
- 批准年份:2023
- 资助金额:33 万元
- 项目类别:地区科学基金项目
相似海外基金
伝統工芸酒器から学ぶ清酒のオフフレーバー除去技術の開発
借鉴传统工艺清酒器皿开发清酒异味去除技术
- 批准号:24K0559024K05590
- 财政年份:2024
- 资助金额:$ 40.73万$ 40.73万
- 项目类别:Grant-in-Aid for Scientific Research (C)Grant-in-Aid for Scientific Research (C)
Resolving the Role of Brain Lymphatic Endothelial Cells in Sleep Dependent Brain Clearance
解决脑淋巴内皮细胞在睡眠依赖性脑清除中的作用
- 批准号:BB/Y001206/1BB/Y001206/1
- 财政年份:2024
- 资助金额:$ 40.73万$ 40.73万
- 项目类别:Research GrantResearch Grant
Omics approaches to decipher infection clearance and resolution in eukaryotic human pathogens
破译真核人类病原体感染清除和解决的组学方法
- 批准号:502579502579
- 财政年份:2024
- 资助金额:$ 40.73万$ 40.73万
- 项目类别:
In vivo function-persistent polymersome nanoreactor with tumor-specific activation and safe clearance/metabolism for synergistic oxidation-chemo-immunotherapy
具有肿瘤特异性激活和安全清除/代谢作用的体内功能持久聚合物纳米反应器,用于协同氧化-化学-免疫治疗
- 批准号:24K2110924K21109
- 财政年份:2024
- 资助金额:$ 40.73万$ 40.73万
- 项目类别:Grant-in-Aid for Early-Career ScientistsGrant-in-Aid for Early-Career Scientists
Salt Mediated Cross Talk Between Lymphatic Vessels and Immune Cells in Kidney Disease
盐介导肾脏疾病中淋巴管和免疫细胞之间的交互作用
- 批准号:1063675510636755
- 财政年份:2023
- 资助金额:$ 40.73万$ 40.73万
- 项目类别: