Charting S-nitrosothiol function during the plant defence response
绘制植物防御反应期间 S-亚硝基硫醇的功能图
基本信息
- 批准号:BB/H000984/1
- 负责人:
- 金额:$ 52.84万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2009
- 资助国家:英国
- 起止时间:2009 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Plant diseases are responsible for about ~25% of total world crop losses per annum. Therefore, plant disease resistance is an important trait to develop in crop plants. Fortunately, plants have evolved a relatively robust defence system to protect themselves from diseases caused by micro-organisms. Understanding how this defence system works will lead to crops that are able to resist microbial infection more effectively, this is especially important at this time of food shortages. Previously, we have demonstrated that S-nitrosylation is a molecular switch that controls the expression of disease resistance against a broad spectrum of potential microbial pathogens in Arabidopsis, a model plant species. Increased S-nitrosylation leads to pathogen susceptibility while decreased S-nitrosylation results in pathogen resistance. Therefore, understanding how plants can regulate the extent of this protein modification may provide us with insights to develop disease resistant crops. By employing a genetics-based strategy, we have identified three genes, SPL1, SPL2 and SPL3 that appear to control the levels of S-nitrosylation during the plant defence response. Utilising standard molecular biology procedures we cloned SPL1 and found it encoded a protein that mediated ubiquintination, another key mechanism to regulate cellular processes in plants. Also, SPL1 contained motifs that suggested it physically interacted with a number of other proteins. Using a variety of molecular and biochemical experimental procedures we will characterise the role of SPL1 in the regulation of S-nitrosylation during the establishment of disease resistance. In a complementary approach, we utilised technology that enabled us to monitor the expression of all known genes in Arabidopsis plant lines that exhibit either increased or decreased amounts of S-nitrosylation. In this way we have identified genes that are directly regulated by changes in the levels of S-nitrosothiols (SNOs), the products of S-nitrosylation. Loss-of-function mutations in one of these genes, SRG1, which encodes a zinc finger protein that controls gene expression, results in hypersensitivity to SNOs. Furthermore, SRG1 is S-nitrosylated. These findings suggest that SRG1 senses increasing SNO levels by becoming S-nitrosylated and then subsequently drives the expression of hitherto unidentified genes that protect plants against high levels of SNOs, termed nitrosative stress. By employing state-of-the-art genomics technologies we will identify the DNA binding sites of SRG1 and determine the consequences of this binding on the expression of adjacent genes / non-coding RNAs. We will also explore if prior S-nitrosylation of SRG1 is required to initiate this process. Collectively, this work will provide major insights how S-nitrosylation controls the expression of plant disease resistance. In the long term the results from this project may aid the development of disease resistant crops.
植物疾病造成约25%的每年世界农作物损失。因此,抗植物疾病是在作物植物中发展的重要特征。幸运的是,植物已经发展出一种相对强大的防御系统,以保护自己免受微生物引起的疾病。了解这种防御系统的工作原理将导致能够更有效地抵抗微生物感染的农作物,这在食物短缺的时候尤其重要。以前,我们已经证明S-亚硝基化是一种分子开关,它控制着拟南芥(一种模型植物种类)中抗病性对广泛的潜在微生物病原体的表达。 S-亚硝基化增加会导致病原体敏感性,而S-亚硝基化降低会导致病原体抗性。因此,了解植物如何调节这种蛋白质修饰的程度可能会为我们提供抗疾病作物的见解。通过采用基于遗传学的策略,我们已经确定了三个基因SPL1,SPL2和SPL3,它们似乎控制了植物防御反应期间S-硝基化水平。利用标准分子生物学程序,我们克隆了SPL1,发现它编码了一种蛋白质,该蛋白介导了泛素化,这是调节植物中细胞过程的另一种关键机制。同样,SPL1包含基序,表明它与许多其他蛋白质在物理上相互作用。使用多种分子和生化实验程序,我们将表征SPL1在疾病耐药性建立期间SPL1在调节S-亚硝基化中的作用。在一种互补的方法中,我们利用了使我们能够监测拟南芥植物线中所有已知基因的表达的技术,这些植物植物线表现出增加或减少S-亚硝基化量。通过这种方式,我们确定了由S-硝基硫醇水平(SNOS)(S-亚硝基化产物)直接调节的基因。这些基因之一SRG1中的功能丧失突变,该基因编码控制基因表达的锌指蛋白,导致对SNOS的过敏性。此外,SRG1是硝基化的。这些发现表明,SRG1通过成为硝基化,然后驱动迄今未识别的基因的表达来增加SNO水平,从而驱动植物免受高水平的SNO的表达,称为硝化应激。通过采用最先进的基因组技术,我们将确定SRG1的DNA结合位点,并确定这种结合对相邻基因 /非编码RNA表达的后果。我们还将探讨是否需要SRG1的先前S-硝基化来启动此过程。总的来说,这项工作将提供主要见解S-硝基化如何控制植物性疾病的表达。从长远来看,该项目的结果可能有助于抗病作物的发展。
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Editorial: Interplay between NO Signaling, ROS, and the Antioxidant System in Plants.
- DOI:10.3389/fpls.2016.01731
- 发表时间:2016
- 期刊:
- 影响因子:5.6
- 作者:Astier J;Loake G;Velikova V;Gaupels F
- 通讯作者:Gaupels F
S-nitrosothiols regulate nitric oxide production and storage in plants through the nitrogen assimilation pathway.
- DOI:10.1038/ncomms6401
- 发表时间:2014-11-11
- 期刊:
- 影响因子:16.6
- 作者:Frungillo, Lucas;Skelly, Michael J.;Loake, Gary J.;Spoel, Steven H.;Salgado, Ione
- 通讯作者:Salgado, Ione
S-nitrosylation of the zinc finger protein SRG1 regulates plant immunity.
锌指蛋白 SRG1 的 S-亚硝基化可调节植物免疫。
- DOI:10.1038/s41467-018-06578-3
- 发表时间:2018-10-12
- 期刊:
- 影响因子:16.6
- 作者:Cui B;Pan Q;Clarke D;Villarreal MO;Umbreen S;Yuan B;Shan W;Jiang J;Loake GJ
- 通讯作者:Loake GJ
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Gary Loake其他文献
Effects of various feedstocks on isotope fractionation of biogas and microbial community structure during anaerobic digestion
不同原料对厌氧消化过程中沼气同位素分馏及微生物群落结构的影响
- DOI:
10.1016/j.wasman.2018.11.043 - 发表时间:
2019 - 期刊:
- 影响因子:8.1
- 作者:
吕作鹏;陈中兵;陈鑫;梁家卓;蒋继宏;Gary Loake - 通讯作者:
Gary Loake
Assessment of the start-up process of anaerobic digestion utilizing swine manure: 13C fractionation of biogas and microbial dynamics
利用猪粪进行厌氧消化启动过程的评估:沼气的 13C 分级和微生物动力学
- DOI:
10.1007/s11356-019-04703-3 - 发表时间:
2019-03 - 期刊:
- 影响因子:5.8
- 作者:
吕作鹏;陈鑫;梁家卓;袁博;陈中兵;蒋继宏;Gary Loake - 通讯作者:
Gary Loake
Gary Loake的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Gary Loake', 18)}}的其他基金
Development of an improved biomanufacturing platform for a key pharmaceutical
为关键药品开发改进的生物制造平台
- 批准号:
BB/V003461/1 - 财政年份:2020
- 资助金额:
$ 52.84万 - 项目类别:
Research Grant
A sustainable production platform for industrially relevant phytochemicals
工业相关植物化学品的可持续生产平台
- 批准号:
BB/R017603/1 - 财政年份:2018
- 资助金额:
$ 52.84万 - 项目类别:
Research Grant
Regulation of S-nitrosothiol function in plant disease resistance
S-亚硝基硫醇在植物抗病性中的功能调控
- 批准号:
BB/D011809/1 - 财政年份:2006
- 资助金额:
$ 52.84万 - 项目类别:
Research Grant
相似国自然基金
红细胞SNO-Hb/Hb[FeNO]平衡对胎粪性肺损伤和肺动脉高压的调控
- 批准号:30672265
- 批准年份:2006
- 资助金额:28.0 万元
- 项目类别:面上项目
S-亚硝基硫醇形成与肿瘤转移的相关研究
- 批准号:30270350
- 批准年份:2002
- 资助金额:20.0 万元
- 项目类别:面上项目
生物活性S-NO衍生物单电子转移反应的研究
- 批准号:20072013
- 批准年份:2000
- 资助金额:17.0 万元
- 项目类别:面上项目
一氧化氮是EDRF脱亚硝基产物假说的探索
- 批准号:39880005
- 批准年份:1998
- 资助金额:10.0 万元
- 项目类别:专项基金项目
相似海外基金
Restoration and Function of S-Nitrosothiol in Stored Blood
储存血液中S-亚硝基硫醇的恢复和作用
- 批准号:
10586343 - 财政年份:2016
- 资助金额:
$ 52.84万 - 项目类别:
Restoration and Function of S-Nitrosothiol in Stored Blood
储存血液中S-亚硝基硫醇的恢复和作用
- 批准号:
9174571 - 财政年份:2016
- 资助金额:
$ 52.84万 - 项目类别:
Restoration and Function of S-Nitrosothiol in Stored Blood
储存血液中S-亚硝基硫醇的恢复和作用
- 批准号:
9282793 - 财政年份:2016
- 资助金额:
$ 52.84万 - 项目类别:
S-nitrosothiol localization and signaling in airway epithelial cells
S-亚硝基硫醇在气道上皮细胞中的定位和信号传导
- 批准号:
8141720 - 财政年份:2011
- 资助金额:
$ 52.84万 - 项目类别:
Restoration and Function of S-nitrosothiol in Stored Blood
储存血液中S-亚硝基硫醇的恢复及作用
- 批准号:
7934476 - 财政年份:2009
- 资助金额:
$ 52.84万 - 项目类别: