Improve Statistical Methods for Profiling of Healthcare Providers
改进医疗保健提供者概况分析的统计方法
基本信息
- 批准号:10595024
- 负责人:
- 金额:$ 32.95万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-04-01 至 2027-03-31
- 项目状态:未结题
- 来源:
- 关键词:AddressAdvanced DevelopmentAlgorithmsBudgetsCOVID-19COVID-19 pandemicCaringCertificationCessation of lifeComputer softwareComputing MethodologiesDataData SetDatabasesDetectionDialysis procedureDimensionsDiscriminationEnd stage renal failureEventEvolutionFamilyGoalsGovernmentGrantHealth PersonnelHealth PolicyHealthcareHealthcare SystemsHospitalizationMeasuresMedicareMethodologyMethodsModelingMonitorOutcomePatient-Focused OutcomesPatientsPerformancePhysiciansPlayPrevalencePrivatizationProceduresProviderPublicationsQuality ControlQuality of CareRecurrenceResearchResearch PersonnelRiskRisk AdjustmentRoleSample SizeSaranSpeedStatistical Data InterpretationStatistical MethodsStreamSubgroupSuspensionsTechniquesTestingTimeTransplant SurgeonUnited States Centers for Medicare and Medicaid ServicesUpdateVariantWritingclinical applicationcomorbiditycomorbidity Indexcoronavirus diseasecostdata registrydata streamsdesigndiscrete timehealth assessmenthigh dimensionalityimprovedinnovationinterestlarge-scale databasemortalitymultiple data sourcesnovelopen sourcepandemic diseaseparallel computerroutine providertheoriestransplant centers
项目摘要
PROJECT SUMMARY
Healthcare provider profiling is of nationwide importance. In order to identify extreme (poor or excellent)
performance and to intervene as necessary, outcomes of patients associated with specific healthcare providers
are routinely monitored by both government and private payers. This monitoring can help patients make more
informed decisions, and can also aid consumers, stakeholders, and payers in identifying providers where
improvement may be needed, and even closing or fining those with extremely poor outcomes.
Our endeavor is motivated by the study of end-stage renal disease (ESRD), which represents 7.2% of the
entire Medicare budget and is of interest due to its heavy burden on patients, families, and the healthcare
system. Existing profiling approaches for analyzing large-scale ESRD registry data assume the risk adjustment
is perfect and the between-provider variation is entirely due to the quality of care, which is often invalid. As a
result, these methods disproportionately identify larger providers, although they need not be “extreme.'' To
address this problem, Aim 1 develops an individualized empirical null approach for profiling healthcare
providers to account for the unexplained between-provider variation due to imperfect risk adjustment.
The national dialysis data contains more than 3,000 comorbidities from over 2,000,000 patients who are
treated from more than 7,000 facilities. The goal is to select important comorbidity indexes for risk adjustment
of provider profiling. However, the use of large-scale databases introduces computational difficulties,
particularly when the event of interest is recurrent, and the numbers of sample size and the dimension of
parameters are large. Traditional methods that perform well for moderate sample sizes and low-dimensional
data do not scale to such massive data. Another challenging aspect of the national dialysis dataset is that
patient information is updated sequentially. How to integrate streaming recurrent event data adds another
level of difficulty. In view of these difficulties, Aim 2 proposes a nested divide-and-conquer-based boosting
procedure for high-dimensional variable selection with large-scale clustered recurrent event data. The
proposed procedure is further combined with a model updating procedure based on the time-dependent
Kullback-Leibler discrimination information to integrate streaming recurrent event data.
Finally, the COVID-19 pandemic has dramatically changed how healthcare care is delivered, and statisticians
have an important role to play in supporting providers and patients through this evolution. Aim 3 proposes a
latent illness-death model to account for temporal and geospatial variation of COVID prevalence in the provider
profiling. This analysis is needed to evaluate provider performance more accurately, to help physicians focus
on groups of patients with excess risk, and to aid providers in determining corrective actions to improve their
performance.
The research in Aim 4 is to develop publicly available software to enable the utilization of the proposed
approaches.
项目概要
医疗保健提供者概况分析对于识别极端(差或优秀)具有全国性的重要性。
表现并根据需要进行干预,与特定医疗保健提供者相关的患者的结果
政府和私人付款人都会定期进行监控,这种监控可以帮助患者赚更多钱。
明智的决策,还可以帮助消费者、利益相关者和付款人确定供应商
可能需要改进,甚至关闭或罚款那些结果极差的公司。
我们的努力源于对终末期肾病 (ESRD) 的研究,该疾病占 7.2%
整个医疗保险预算,由于其对患者、家庭和医疗保健的沉重负担而受到关注
用于分析大规模 ESRD 注册数据的现有分析方法假设风险调整。
是完美的,提供者之间的差异完全是由于护理质量造成的,这通常是无效的。
结果,这些方法不成比例地识别出较大的提供商,尽管它们不一定是“极端的”。
为了解决这个问题,目标 1 开发了一种个性化的经验无效方法来分析医疗保健
供应商要考虑由于不完善的风险调整而导致的无法解释的供应商之间的差异。
全国透析数据包含超过 2,000,000 名患者的 3,000 多种合并症
从 7,000 多家机构进行治疗,目标是选择重要的合并症指标进行风险调整。
然而,大规模数据库的使用带来了计算困难,
特别是当感兴趣的事件重复出现时,样本数量和维度
参数很大。对于中等样本量和低维,传统方法表现良好。
国家透析数据集的另一个具有挑战性的方面是,数据无法扩展到如此海量的数据。
如何整合复发事件数据又增加了患者信息的顺序更新。
鉴于这些困难,目标 2 提出了一种基于嵌套分而治之的提升。
使用大规模聚类循环事件数据进行高维变量选择的过程。
所提出的程序进一步与基于时间相关的模型更新程序相结合
Kullback-Leibler 判别信息可集成流式循环事件数据。
最后,COVID-19 大流行极大地改变了医疗保健的提供方式,统计学家
目标 3 提出了在支持提供者和患者方面发挥重要作用。
潜在疾病-死亡模型,用于解释提供者中新冠病毒流行率的时间和地理空间变化
需要进行这种分析来更准确地评估提供者的表现,以帮助医生集中精力。
风险过高的患者群体,并帮助提供者确定纠正措施以改善他们的
表现。
目标 4 的研究是开发公开可用的软件,以便能够利用所提出的
接近。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Individualized empirical null estimation for exact tests of healthcare quality.
用于精确测试医疗质量的个性化经验零估计。
- DOI:
- 发表时间:2024-04-08
- 期刊:
- 影响因子:2
- 作者:Hartman, Nicholas;He, Kevin
- 通讯作者:He, Kevin
Test-specific funnel plots for healthcare provider profiling leveraging individual- and summary-level information.
利用个人和摘要级别的信息,针对医疗保健提供者进行分析的特定于测试的漏斗图。
- DOI:
- 发表时间:2023-03
- 期刊:
- 影响因子:0
- 作者:Wu, Wenbo;Kuriakose, Jonathan P;Weng, Wenjing;Burney, Richard E;He, Kevin
- 通讯作者:He, Kevin
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Zhi Kevin He其他文献
Zhi Kevin He的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Zhi Kevin He', 18)}}的其他基金
Improve Statistical Methods for Profiling of Healthcare Providers
改进医疗保健提供者概况分析的统计方法
- 批准号:
10443230 - 财政年份:2022
- 资助金额:
$ 32.95万 - 项目类别:
相似国自然基金
减少编程错误:基于认证内核的全新的快捷依赖类型PiSigma高级编程语言开发
- 批准号:61070023
- 批准年份:2010
- 资助金额:30.0 万元
- 项目类别:面上项目
相似海外基金
MASS: Muscle and disease in postmenopausal women
MASS:绝经后妇女的肌肉和疾病
- 批准号:
10736293 - 财政年份:2023
- 资助金额:
$ 32.95万 - 项目类别:
Machine Learning with Scintillation Photon Counting Detectors to Advance PET Imaging Performance
利用闪烁光子计数探测器进行机器学习以提高 PET 成像性能
- 批准号:
10742435 - 财政年份:2023
- 资助金额:
$ 32.95万 - 项目类别:
Small Molecule Therapeutics for Sickle Cell Anemia
镰状细胞性贫血的小分子疗法
- 批准号:
10601679 - 财政年份:2023
- 资助金额:
$ 32.95万 - 项目类别:
Addressing Algorithmic Unreliability and Dataset Shift in EHR-based Risk Prediction Models
解决基于 EHR 的风险预测模型中的算法不可靠性和数据集转移
- 批准号:
10679376 - 财政年份:2023
- 资助金额:
$ 32.95万 - 项目类别:
HORMAD-specific TGF-beta resistant memory T cells for treatment of patients with Gastro-esophageal Cancer
HORMAD 特异性 TGF-β 耐药性记忆 T 细胞用于治疗胃食管癌患者
- 批准号:
10731407 - 财政年份:2023
- 资助金额:
$ 32.95万 - 项目类别: