AIM-for-RA
RA 的 AIM
基本信息
- 批准号:10595666
- 负责人:
- 金额:$ 160万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-03-22 至 2026-12-31
- 项目状态:未结题
- 来源:
- 关键词:3-DimensionalAddressAffectAlgorithmsArchitectureAreaArthritisArtificial IntelligenceAutoantibodiesAutoimmuneB-LymphocytesBindingBiologicalBiological MarkersBiological Response Modifier TherapyBiopsyCell CommunicationCellsCharacteristicsClassificationClinicalClinical ResearchClinical TrialsComplementDataDiagnosisDiseaseDisease OutcomeDisease remissionDisease-Modifying Second-Line DrugsDissectionDissociationDrug TargetingEarly treatmentEnrollmentEnsureEnvironmental ExposureEvolutionFailureFibroblastsFlareFundingGenerationsGoalsHeterogeneityHistologyImageImmuneImmune systemIn SituIndividualInflammationInflammatoryKnowledgeLongitudinal StudiesMeasurementMediatorMethotrexateMolecularMolecular AnalysisOnset of illnessOrangesOutcomePainPathogenesisPathogenicityPathologic ProcessesPathway interactionsPatient CarePatient RecruitmentsPatientsPatternPhenotypePopulationPositioning AttributePrecision therapeuticsPreparationPrevention strategyProcessProtocols documentationPsoriatic ArthritisResearch PersonnelRheumatoid ArthritisRiskRoleSamplingScienceSelection for TreatmentsSeminalSiteSpecimenSynovial CellSynovial FluidSynovial MembraneSynovitisSystemic Lupus ErythematosusTechnologyTissue SampleTissuesTreatment FailureTreatment outcomeUnited States National Institutes of HealthVariantadverse outcomebiobankbone cellclinical phenotypecohortdesigndisabilitydisorder preventioneffector T cellepigenetic regulationfollow-uphigh dimensionalityimprovedindividualized medicineinnovationjoint inflammationjoint injurymonocytemultimodal datamultimodalitynovelpatient retentionpersonalized therapeuticphenotypic datapre-clinicalpreventprognosticprogramsreconstructionresponsesmall moleculestandard of caretissue reconstructiontranscriptomicstranslational applicationstreatment responsetreatment strategy
项目摘要
Rheumatoid arthritis (RA) affects approximately 1% of the population and is characterized by
inflammation and joint damage, often leading to considerable disability and pain in both early and
established stages. Key areas of unmet need in the field include the: 1) highly heterogeneous and
unpredictable disease course, 2) rarity of lasting remissions, 3) failure of currently available treatments
to achieve low disease activity and/or limit progressive joint damage in many patients, and 4) lack of
robust biomarkers necessary to personalize appropriate treatment strategies. We propose that
cellular and molecular variation in synovial tissue underlies this heterogeneity and that understanding
the basis for this will improve the prediction of disease course and provide a rationale for the timely
selection of precision treatment strategies with higher rates of sustained RA control. Through
sustained collaborative global team-science, the AIM-for-RA Team has already developed state-of-
the-art protocols that deconstructed RA synovial biopsy tissues - an innovation that profoundly
advanced knowledge in cells and pathways involved in RA pathogenesis, identified novel treatment
targets, identified disease biomarkers, and opened new opportunities in disease prevention. However,
it remains unclear how molecular interactions in the synovium relate to the evolution of defined
clinical outcomes, from the at-risk preclinical period to arthritis onset, and then through to synovitis
outcome. Therefore, AIM-for-RA Disease Team (DT) aims to relate disease-relevant synovial cellular
pathways and dynamic crosstalk to environmental exposures, disease outcomes and treatment
response, thereby reconstructing the disease pathogenesis trajectory. In a DMARD-naïve RA cross-
sectional synovial biopsy-based study of 50 RA patients across 9 sites using harmonized protocols and
integrated technologies, Aim 1 will deliver high-quality multimodal clinical phenotype and histology
data, along with synovial tissue and other biosamples, to evaluate how synovial cellular and molecular
pathways relate to disease onset. With longitudinal follow-up and repeat biopsy of these individuals
after methotrexate monotherapy, Aim 2 will address whether synovial signatures and multi-modal
data predict first-line methotrexate response, or failure in patients with early previously untreated
disease. Finally, in Aim 3, in patients with methotrexate inadequate response we will address whether
distinct synovial cellular or molecular features predict a positive response to biologic therapies directly
targeting these features. The outcomes of this program will have potential for rapid translational
application to improve treatment outcomes at all RA disease stages. Collectively, the collaborative,
global AIM-for-RA Team that has made seminal observations regarding RA disease pathogenesis is
ideally suited to inform the key questions and meet major unmet needs in the field.
类风湿性关节炎 (RA) 影响大约 1% 的人口,其特点是
炎症和关节损伤,通常会导致早期和晚期严重的残疾和疼痛
该领域未满足需求的关键领域包括:1)高度异质和
不可预测的病程,2) 持久缓解的罕见性,3) 目前可用的治疗方法失败
实现低疾病活动度和/或限制许多患者进行性关节损伤,以及 4) 缺乏
我们建议需要强有力的生物标志物来制定适当的治疗策略。
滑膜组织中的细胞和分子变异是这种异质性的基础,并且理解
以此为基础将改善对病程的预测,并为及时治疗提供依据。
通过选择具有更高 RA 持续控制率的精准治疗策略。
持续协作的全球团队科学,AIM-for-RA 团队已经开发出最新状态
解构 RA 滑膜活检组织的最先进方案——一项深刻的创新
对参与 RA 发病机制的细胞和途径的先进知识,确定了新的治疗方法
然而,
目前尚不清楚滑膜中的分子相互作用如何与定义的进化相关
临床结果,从临床前危险期到关节炎发作,然后到滑膜炎
因此,AIM-for-RA 疾病团队 (DT) 旨在将疾病相关的滑膜细胞联系起来。
环境暴露、疾病结果和治疗的途径和动态串扰
反应,从而重建疾病发病机制轨迹。
使用协调方案对 9 个地点的 50 名 RA 患者进行基于滑膜活检的截面研究
集成技术,Aim 1 将提供高质量的多模式临床表型和组织学
数据以及滑膜组织和其他生物样本,以评估滑膜细胞和分子如何
对这些个体进行纵向随访和重复活检。
甲氨蝶呤单药治疗后,目标 2 将解决滑膜特征和多模式是否
数据预测一线甲氨蝶呤对早期未接受治疗的患者的反应或失败
最后,在目标 3 中,对于甲氨蝶呤反应不足的患者,我们将解决是否存在这种情况。
不同的滑膜细胞或分子特征直接预测对生物疗法的积极反应
针对这些特征,该计划的成果将具有快速转化的潜力。
总体而言,协作,改善所有 RA 疾病阶段的治疗结果。
全球 AIM-for-RA 团队对 RA 疾病发病机制进行了开创性观察
非常适合解决关键问题并满足该领域未满足的主要需求。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jennifer Howitt Anolik其他文献
Jennifer Howitt Anolik的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jennifer Howitt Anolik', 18)}}的其他基金
Cellular Dynamics at the Synovium-Bone interface in RA
RA 滑膜-骨界面的细胞动力学
- 批准号:
10200988 - 财政年份:2014
- 资助金额:
$ 160万 - 项目类别:
Cellular Dynamics at the Synovium-Bone interface in RA
RA 滑膜-骨界面的细胞动力学
- 批准号:
9913036 - 财政年份:2014
- 资助金额:
$ 160万 - 项目类别:
Cellular Dynamics at the Synovium-Bone interface in RA
RA 滑膜-骨界面的细胞动力学
- 批准号:
8932656 - 财政年份:2014
- 资助金额:
$ 160万 - 项目类别:
Cellular Dynamics at the Synovium-Bone interface in RA
RA 滑膜-骨界面的细胞动力学
- 批准号:
8851812 - 财政年份:2014
- 资助金额:
$ 160万 - 项目类别:
Cellular Dynamics at the Synovium-Bone interface in RA
RA 滑膜-骨界面的细胞动力学
- 批准号:
10166379 - 财政年份:2014
- 资助金额:
$ 160万 - 项目类别:
Cellular Dynamics at the Synovium-Bone interface in RA
RA 滑膜-骨界面的细胞动力学
- 批准号:
9276491 - 财政年份:2014
- 资助金额:
$ 160万 - 项目类别:
Cellular Dynamics at the Synovium-Bone interface in RA
RA 滑膜-骨界面的细胞动力学
- 批准号:
9318123 - 财政年份:2014
- 资助金额:
$ 160万 - 项目类别:
Human Transitional B Cells: Homeostasis, Function, and Impact of BCDT
人类移行 B 细胞:稳态、功能和 BCDT 的影响
- 批准号:
8528452 - 财政年份:2013
- 资助金额:
$ 160万 - 项目类别:
相似国自然基金
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
相似海外基金
A HUMAN IPSC-BASED ORGANOID PLATFORM FOR STUDYING MATERNAL HYPERGLYCEMIA-INDUCED CONGENITAL HEART DEFECTS
基于人体 IPSC 的类器官平台,用于研究母亲高血糖引起的先天性心脏缺陷
- 批准号:
10752276 - 财政年份:2024
- 资助金额:
$ 160万 - 项目类别:
A Gene-Network Discovery Approach to Structural Brain Disorders
结构性脑疾病的基因网络发现方法
- 批准号:
10734863 - 财政年份:2023
- 资助金额:
$ 160万 - 项目类别:
SELENOF is a Novel Tumor Suppressor and a New Target to Overcome Racial Disparity in Breast Cancer.
SELENOF 是一种新型肿瘤抑制剂,也是克服乳腺癌种族差异的新靶点。
- 批准号:
10735662 - 财政年份:2023
- 资助金额:
$ 160万 - 项目类别:
Novel Implementation of Microporous Annealed Particle HydroGel for Next-generation Posterior Pharyngeal Wall Augmentation
用于下一代咽后壁增强的微孔退火颗粒水凝胶的新实现
- 批准号:
10727361 - 财政年份:2023
- 资助金额:
$ 160万 - 项目类别:
CRISPR-Cas Editing as a Genetic Cure for Autosomal Dominant Polycystic Kidney Disease
CRISPR-Cas 编辑作为常染色体显性多囊肾病的基因治疗
- 批准号:
10822502 - 财政年份:2023
- 资助金额:
$ 160万 - 项目类别: