Continuous Therapeutic Drug Monitoring of Antibiotics in CRRT
CRRT 中抗生素的连续治疗药物监测
基本信息
- 批准号:10557161
- 负责人:
- 金额:$ 68.97万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-02-01 至 2025-01-31
- 项目状态:未结题
- 来源:
- 关键词:Acute Renal Failure with Renal Papillary NecrosisAdsorptionAmikacinAminoglycosidesAnimalsAntibioticsBindingBinding ProteinsBiological AssayBloodCessation of lifeClinicalClinical TrialsConsensusCritical IllnessDataDevelopmentDialysis procedureDoseDrug ExposureDrug KineticsDrug MonitoringEnsureExcisionFeedbackFiltrationFrequenciesHospitalsHourIn VitroIncidenceIndividualInfectionInferiorInstitutional Review BoardsIntensive Care UnitsKidneyLaboratoriesLeadLibrariesLifeLiquid substanceMeasurementMeasuresMembraneMetabolic Clearance RateModalityModelingMonitorOligonucleotidesOutcomePatient MonitoringPatientsPharmaceutical PreparationsPhysiologicalPhysiologyPlasmaProtocols documentationRattusRenal Replacement TherapyRenal functionResearchSamplingSepsisSerumSideTechnologyTherapeuticTherapeutic IndexTimeTobramycinToxic effectTranslatingValidationVancomycinVariantWhole BloodWorkantimicrobialappropriate doseaptamerawakeclinical applicationclinical trial readinessdesigndosagedrug clearanceexperimental studyhemodynamicsimproved outcomein vitro Modelindividualized medicinemortalitypersonalized approachprogramsrapid testreceptorsensorsepticseptic patientssmall moleculetoolvalidation studieswasting
项目摘要
Summary
Aptamers are oligonucleotide-based receptors that can be isolated from the large libraries of random
oligonucleotides to bind to small molecules. In the past, our team developed systematic approaches to tailor
aptamers to specific applications and turn them into sensors, while also validating them for clinical use. Our
work culminated in electrochemical aptamer-based (E-AB) sensors, the first ever general sensing platform
capable of monitoring drugs in real time in the living body. When employed in closed-loop feedback control,
this breakthrough enabled us to control the levels of drugs in the blood of awake, ambulatory animal subjects
in real time. Via the research program proposed here, we will translate this progress into clinical applications
focused on patients with sepsis-induced acute kidney injury on continuous renal replacement therapy (CRRT).
One out of three hospital deaths in the USA are due to sepsis, sepsis is the leading cause of acute kidney
injury (AKI) in hospitals, and sepsis-induced AKI results in a mortality rate in intensive care units (ICU) >60%.
Due to greatly reduced renal function these critically ill patients often require CRRT. This, in turn, leads to a
widely recognized (“big”) problem: how to appropriately dose medications, including life-saving antibiotics, in
hemodynamically unstable patients with wildly divergent and highly variable drug clearance rates. Here we
propose to bridge the specific gap in technology that is needed to solve this problem.
The focus of our work will be on E-AB sensors that can continuously monitor drug elimination in effluent
produced during CRRT, thus providing complete information on extracorporeal clearance in real time. We will
pursue two antibiotic groups with narrow therapeutic windows that are predominantly cleared via the kidneys:
vancomycin and the aminoglycosides. In a contrast to the existing therapeutic drug monitoring protocols with
turnaround times of many hours, our approach will return immediately actionable information to the clinician,
which can be used to adjust dosages. There is a broad consensus that such an information would improve
outcomes in septic CRRT patients with AKI, by enabling rapid, accurate, and personalized dosing adjustment.
We will first validate our E-AB sensors on matched whole blood and effluent clinical samples. Next, we will
validate the applicability of our technology to CRRT monitoring by implementing sensors in an in vitro model
simulating typical CRRT modalities, with sets of sensors monitoring drug levels continuously on both the blood
and effluent sides of filtration membranes. Finally, we will demonstrate extended, real-time therapeutic drug
monitoring in the spent dialysis fluids of real patients in the ICU. At the end of this work, aptameric sensors will
be ready for clinical trials of their efficacy in the treatment of sepsis in patients on CRRT.
概括
适体是基于寡核苷酸的受体,可以从大型随机数据库中分离出来
过去,我们的团队开发了定制寡核苷酸的系统方法。
适体到特定的应用并将它们转化为传感器,同时也验证它们的临床用途。
工作的最终成果是基于电化学适体(E-AB)的传感器,这是第一个通用传感平台
当用于闭环反馈控制时,能够实时监测生物体内的药物。
这一突破使我们能够控制清醒、活动的动物受试者血液中的药物水平
通过这里提出的研究计划,我们将把这一进展实时转化为临床应用。
专注于接受连续肾脏替代治疗(CRRT)的脓毒症引起的急性肾损伤患者。
在美国,三分之一的医院死亡是由于脓毒症,脓毒症是急性肾病的主要原因
医院内的损伤(AKI),脓毒症引起的 AKI 导致重症监护病房(ICU)的死亡率 >60%。
由于肾功能大大下降,这些危重患者通常需要 CRRT,这反过来又导致了 CRRT。
广泛认可的(“大”)问题:如何在治疗中适当地服用药物,包括救生抗生素
血流动力学不稳定的患者,其药物清除率差异很大且变化很大。
提议弥合解决该问题所需的具体技术差距。
我们的工作重点是 E-AB 传感器,它可以连续监测废水中药物的消除情况
在 CRRT 期间产生,从而实时提供体外清除的完整信息。
寻求两种治疗窗口狭窄且主要通过肾脏清除的抗生素组:
与现有的治疗药物监测方案相反。
周转时间长达数小时,我们的方法将立即向临床医生返回可操作的信息,
可以用来调整剂量,人们普遍认为这样的信息会有所改善。
通过实现快速、准确和个性化的剂量调整,改善脓毒症 CRRT 合并 AKI 患者的结果。
我们将首先在匹配的全血和流出物临床样本上验证我们的 E-AB 传感器。
通过在体外模型中实施传感器来验证我们的技术在 CRRT 监测中的适用性
模拟典型的 CRRT 模式,使用多组传感器连续监测血液中的药物水平
最后,我们将展示扩展的实时治疗药物。
在这项工作结束时,适配体传感器将监测 ICU 中真实患者的用过的透析液。
准备好进行其治疗 CRRT 患者脓毒症疗效的临床试验。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Sumit Mohan其他文献
Sumit Mohan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Sumit Mohan', 18)}}的其他基金
Continuous Therapeutic Drug Monitoring of Antibiotics in CRRT
CRRT 中抗生素的连续治疗药物监测
- 批准号:
10096440 - 财政年份:2021
- 资助金额:
$ 68.97万 - 项目类别:
Increasing Minority Population Awareness through Community Teaching for Improved Organ Donation (IMPACT for Improved Organ Donation)
通过改善器官捐赠的社区教学提高少数群体的意识(改善器官捐赠的影响)
- 批准号:
9393806 - 财政年份:2017
- 资助金额:
$ 68.97万 - 项目类别:
5/14 APOL1 Long-term Kidney Transplantation Outcomes Network (APOLLO) Clinical Center
5/14 APOL1长期肾移植结果网络(APOLLO)临床中心
- 批准号:
10731162 - 财政年份:2017
- 资助金额:
$ 68.97万 - 项目类别:
Increasing Minority Population Awareness through Community Teaching for Improved Organ Donation (IMPACT for Improved Organ Donation)
通过改善器官捐赠的社区教学提高少数群体的意识(改善器官捐赠的影响)
- 批准号:
10170343 - 财政年份:2017
- 资助金额:
$ 68.97万 - 项目类别:
2/2 APOL1 Long-Term Kidney Transplantation Outcomes Network- Clinical Center
2/2 APOL1 长期肾移植结果网络-临床中心
- 批准号:
9974999 - 财政年份:2017
- 资助金额:
$ 68.97万 - 项目类别:
Increasing Minority Population Awareness through Community Teaching for Improved Organ Donation (IMPACT for Improved Organ Donation)
通过改善器官捐赠的社区教学提高少数群体的意识(改善器官捐赠的影响)
- 批准号:
9920711 - 财政年份:2017
- 资助金额:
$ 68.97万 - 项目类别:
相似国自然基金
耦合电化学氧化强化电吸附脱盐的双电路系统对微咸水的高效处理机制
- 批准号:52300006
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
儿茶酚基导电金属有机框架膜的设计构筑及其对CO2的吸附分离研究
- 批准号:22305211
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
高能电子束辐射高效定向制备功能共价有机框架材料及其吸附应用研究
- 批准号:12305397
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
室温强氮气吸附材料的构筑及N2/CH4反转分离的研究
- 批准号:22371221
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
高性能多孔液体吸附剂的创制及其强化天然气脱碳机理研究
- 批准号:22308276
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Thermal stability of adsorption solar power plants
吸附式太阳能发电厂的热稳定性
- 批准号:
2871817 - 财政年份:2024
- 资助金额:
$ 68.97万 - 项目类别:
Studentship
Molecular Simulations of Additive Self-Assembly, Rheology, and Surface Adsorption in Complex Fluids
复杂流体中添加剂自组装、流变学和表面吸附的分子模拟
- 批准号:
2901619 - 财政年份:2024
- 资助金额:
$ 68.97万 - 项目类别:
Studentship
An Adsorption-Compression Cold Thermal Energy Storage System (ACCESS)
吸附压缩冷热能存储系统(ACCESS)
- 批准号:
EP/W027593/2 - 财政年份:2024
- 资助金额:
$ 68.97万 - 项目类别:
Research Grant
Computational Studies of Gas Adsorption in Special Nuclear Materials (SNMs).
特殊核材料(SNM)中气体吸附的计算研究。
- 批准号:
2903366 - 财政年份:2024
- 资助金额:
$ 68.97万 - 项目类别:
Studentship
Super-Resolution Imaging of Surface Adsorption on Single Nanoparticles for Electrochemical Dechlorination
用于电化学脱氯的单个纳米颗粒表面吸附的超分辨率成像
- 批准号:
2303933 - 财政年份:2023
- 资助金额:
$ 68.97万 - 项目类别:
Standard Grant