Replication stress response defects predict and enhance immune checkpoint therapy response in triple negative breast cancer
复制应激反应缺陷可预测并增强三阴性乳腺癌的免疫检查点治疗反应
基本信息
- 批准号:10556413
- 负责人:
- 金额:$ 36.2万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-02-01 至 2026-01-31
- 项目状态:未结题
- 来源:
- 关键词:AchievementAffectBioinformaticsBiological MarkersBreast Cancer CellBreast Cancer ModelBreast Cancer PatientCRISPR screenCancer BurdenCellsCombined Modality TherapyConsensusCytometryCytoplasmCytotoxic ChemotherapyDNADNA biosynthesisDefectDiseaseEffectivenessEnzymesExhibitsGenetic TranscriptionImmunologic SensitizationImmunological ModelsImmunotherapyLiteratureMediatingMusMutationNormal CellOutcomePatient-Focused OutcomesPatientsPharmaceutical PreparationsPopulationPredispositionProductionProliferatingRecurrenceReplication-Associated ProcessResearchResistanceSingle-Stranded DNASystemTestingTherapeutic EffectTumor BurdenWorkbiological adaptation to stresscheckpoint therapycohortcytokinefollow-upgenetic signaturegenome integrityimmune checkpoint blockadeimmunogenicimmunogenicityimprovedimproved outcomein vivoknock-downmouse modelmultiplexed imagingneoplastic cellnoveloverexpressionpatient prognosispatient subsetspotential biomarkerpredicting responsepredictive markerreplication stressresponsetherapy outcometreatment responsetriple-negative invasive breast carcinomatumortumor microenvironmenttumor-immune system interactions
项目摘要
Project Summary
The lack of specific targets for the treatment of triple-negative breast cancer (TNBC) is a major challenge, as
many TNBCs do not respond to cytotoxic chemotherapies. Immune checkpoint blockade (ICB) has yielded
promising results in both advanced and early-stage TNBC and is expected to substantially improve the overall
prognosis of patients with this disease. However, since TNBC is not inherently immunogenic, it is important to
identify patients who would benefit most from immunotherapy and to identify agents that can prime the tumor
microenvironment to enhance the therapeutic effects. TNBC is known to exhibit high levels of replication stress,
which occurs when the DNA replication machinery encounters obstacles that impede the replication process. In
normal cells, replication stress activates the replication stress response (RSR) to maintain genome integrity.
Defective RSR allows cells with high replication stress to survive and proliferate. Recently, we have identified a
gene signature that represents defects in RSR (RSRD). We found this RSRD signature to be highly enriched in
TNBC cells. Furthermore, RSRD-high TNBC cells accumulate cytoplasmic DNA and induce STING-dependent
cytokine production, which is required for the effectiveness of ICB. Intriguingly, the RSRD signature score
correlates perfectly with the response of TNBC to ICB in syngeneic mouse models, and it accurately predicts
ICB response across 5 low–mutation-burden tumor lineages. All these intriguing findings support the hypotheses
that RSRD may act as a key determinant of ICB outcomes in low–mutation-burden cancers, including TNBC,
and that RSRD-enhancing drugs may sensitize ICB-resistant TNBC to immunotherapy. These hypotheses will
be tested via 3 specific aims. (1) To determine how the immune microenvironment is modified in RSR-defective
TNBC. We will use a highly multiplexed imaging mass cytometry panel to determine how RSRD remodels the
immune microenvironment of TNBC and induces susceptibility to ICB. In addition, we will manipulate the RSR
status in TNBC cells to assess the relationship between RSR defects and immunotherapy response. (2) To
identify causative drivers of RSRD-high–mediated ICB responsiveness in TNBC. Our preliminary studies suggest
that RSR defects may drive immunotherapy response through accumulation of immunostimulatory cytosolic
single-stranded DNA (ssDNA). We will, therefore, seek to manipulate the cytosolic ssDNA level in TNBC models
to determine whether cytosolic ssDNA is indeed a causative driver of ICB responsiveness in TNBC. In addition,
to understand why our RSRD gene signature predicts response to ICB in TNBC, we will apply an in vivo CRISPR
screen to determine what transcriptional changes contained within our RSRD gene signature cause this
response. (3) To develop novel combination therapy to convert RSRD-low TNBC to RSRD-high to improve their
response to ICB. Using cutting-edge systems and bioinformatics approaches, we have identified many potential
RSRD-inducing agents. We will assess the 6 most promising candidates and identify the best candidate
compound that can effectively sensitize RSRD-low TNBC to ICB.
项目概要
缺乏治疗三阴性乳腺癌(TNBC)的具体靶点是一个重大挑战,因为
许多 TNBC 对细胞毒性化疗没有反应。
在晚期和早期 TNBC 中都取得了有希望的结果,预计将大大改善整体
然而,由于 TNBC 本身不具有免疫原性,因此重要的是
确定最能从免疫治疗中受益的患者,并确定可以启动肿瘤的药物
众所周知,TNBC 表现出高水平的复制应激,以增强治疗效果。
当DNA复制机器遇到阻碍复制过程的障碍时就会发生这种情况。
正常细胞中,复制应激会激活复制应激反应(RSR)以维持基因组完整性。
有缺陷的 RSR 允许具有高复制压力的细胞存活和增殖。
代表 RSR 缺陷的基因特征 (RSRD) 我们发现该 RSRD 特征高度富集于 RSR 缺陷。
TNBC 细胞。此外,RSRD 高的 TNBC 细胞积累细胞质 DNA 并诱导 STING 依赖性
细胞因子的产生,这是 ICB 有效性所必需的。有趣的是,RSRD 特征评分。
与同基因小鼠模型中 TNBC 对 ICB 的反应完美相关,并且可以准确预测
5 个低突变负荷肿瘤谱系的 ICB 反应所有这些有趣的发现都支持了这些假设。
RSRD 可能是低突变负担癌症(包括 TNBC)中 ICB 结果的关键决定因素,
RSRD 增强药物可能会使 ICB 耐药的 TNBC 对免疫治疗敏感。
(1) 确定RSR缺陷时免疫微环境如何改变
我们将使用高度多重成像质谱流式细胞术面板来确定 RSRD 如何重塑
TNBC 的免疫微环境并诱导对 ICB 的易感性此外,我们将操纵 RSR。
TNBC 细胞的状态,以评估 RSR 缺陷与免疫治疗反应之间的关系 (2) To。
我们的初步研究表明,确定 TNBC 中 RSRD 高介导的 ICB 反应的驱动因素。
RSR 缺陷可能通过免疫刺激性胞质的积累来驱动免疫治疗反应
因此,我们将寻求操纵 TNBC 模型中的胞质 ssDNA 水平。
以确定胞质 ssDNA 是否确实是 TNBC 中 ICB 反应的致病驱动因素。
为了理解为什么我们的 RSRD 基因特征可以预测 TNBC 对 ICB 的反应,我们将应用体内 CRISPR
筛选以确定我们的 RSRD 基因特征中包含的哪些转录变化导致了这种情况
(3) 开发新的联合疗法,将 RSRD 低的 TNBC 转化为 RSRD 高的 TNBC,以改善其疗效。
利用尖端系统和生物信息学方法,我们发现了许多潜在的潜力。
我们将评估 6 个最有希望的候选药物并确定最佳候选药物。
可以有效地使 RSRD 低的 TNBC 对 ICB 敏感的化合物。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Shiaw-Yih Lin其他文献
Shiaw-Yih Lin的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Shiaw-Yih Lin', 18)}}的其他基金
RNase H2 is a novel therapeutic target in triple negative breast cancer
RNase H2 是三阴性乳腺癌的新治疗靶点
- 批准号:
10658881 - 财政年份:2021
- 资助金额:
$ 36.2万 - 项目类别:
Replication stress response defects predict and enhance immune checkpoint therapy response in triple negative breast cancer
复制应激反应缺陷可预测并增强三阴性乳腺癌的免疫检查点治疗反应
- 批准号:
10330595 - 财政年份:2021
- 资助金额:
$ 36.2万 - 项目类别:
RNase H2 is a novel therapeutic target in triple negative breast cancer
RNase H2 是三阴性乳腺癌的新治疗靶点
- 批准号:
10437893 - 财政年份:2021
- 资助金额:
$ 36.2万 - 项目类别:
RNase H2 is a novel therapeutic target in triple negative breast cancer
RNase H2 是三阴性乳腺癌的新治疗靶点
- 批准号:
10297432 - 财政年份:2021
- 资助金额:
$ 36.2万 - 项目类别:
Replication stress response defects predict and enhance immune checkpoint therapy response in triple negative breast cancer
复制应激反应缺陷可预测并增强三阴性乳腺癌的免疫检查点治疗反应
- 批准号:
10117861 - 财政年份:2021
- 资助金额:
$ 36.2万 - 项目类别:
RNase H2 is a novel therapeutic target in triple negative breast cancer
RNase H2 是三阴性乳腺癌的新治疗靶点
- 批准号:
10297432 - 财政年份:2021
- 资助金额:
$ 36.2万 - 项目类别:
Signature-guided therapy for mismatch repair defective cancers
特征引导治疗错配修复缺陷型癌症
- 批准号:
9751230 - 财政年份:2017
- 资助金额:
$ 36.2万 - 项目类别:
Signature-guided therapy for mismatch repair defective cancers
特征引导治疗错配修复缺陷型癌症
- 批准号:
9361858 - 财政年份:2017
- 资助金额:
$ 36.2万 - 项目类别:
Signature-guided therapy for mismatch repair defective cancers
特征引导治疗错配修复缺陷型癌症
- 批准号:
9977136 - 财政年份:2017
- 资助金额:
$ 36.2万 - 项目类别:
Signature-guided therapy for mismatch repair defective cancers
特征引导治疗错配修复缺陷型癌症
- 批准号:
10215252 - 财政年份:2017
- 资助金额:
$ 36.2万 - 项目类别:
相似国自然基金
癌症突变影响液-液相分离相关酪氨酸模体的生物信息学研究
- 批准号:32100532
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
滋肾清热利湿化瘀方干预肠道菌群及影响PCOS的分子机制研究
- 批准号:81860865
- 批准年份:2018
- 资助金额:37.0 万元
- 项目类别:地区科学基金项目
nsSNPs影响植物蛋白质磷酸化修饰的生物信息学研究
- 批准号:31601067
- 批准年份:2016
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
过量氮输入导致的土壤酸化对小麦碳、氮代谢影响机制研究
- 批准号:41501262
- 批准年份:2015
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
基于转录组学分析的转基因乳酸菌对大鼠生殖发育的影响研究
- 批准号:31501586
- 批准年份:2015
- 资助金额:18.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Modifying adipocyte and pre-adipocyte cell fate in fibroadipose tissue of secondary lymphedema
改变继发性淋巴水肿纤维脂肪组织中的脂肪细胞和前脂肪细胞细胞命运
- 批准号:
10571049 - 财政年份:2023
- 资助金额:
$ 36.2万 - 项目类别:
Develop new bioinformatics infrastructures and computational tools for epitranscriptomics data
为表观转录组数据开发新的生物信息学基础设施和计算工具
- 批准号:
10633591 - 财政年份:2023
- 资助金额:
$ 36.2万 - 项目类别:
Research and Capacity Building in Antimicrobial Resistance in West Africa
西非抗菌素耐药性研究和能力建设
- 批准号:
10685898 - 财政年份:2023
- 资助金额:
$ 36.2万 - 项目类别:
BCL10-MALT1 protein-protein interaction in lymphocyte function and dysfunction
BCL10-MALT1 蛋白-蛋白相互作用在淋巴细胞功能和功能障碍中的作用
- 批准号:
10722751 - 财政年份:2023
- 资助金额:
$ 36.2万 - 项目类别: