Motility and Guidance Signals Control Migration of Muscle Precursors
运动性和引导信号控制肌肉前体的迁移
基本信息
- 批准号:10557028
- 负责人:
- 金额:$ 25.95万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-04-05 至 2028-03-31
- 项目状态:未结题
- 来源:
- 关键词:3-DimensionalAdultAgonistAntibodiesBindingBiological ModelsBody RegionsCXC ChemokinesCXCR4 ReceptorsCellsChemicalsChestCuesDataDestinationsDevelopmentESR2 geneEmbryoEstrogen Receptor betaFDA approvedFutureGene ExpressionGenesGeneticGenetic EpistasisGrowthHumanImpairmentKnock-outLabelLibrariesLigandsLimb structureLocationMET geneMalignant NeoplasmsMesenchymalMetastasis InductionMigration AssayMorphogenesisMovementMuscleMyoblastsMyomatous neoplasmNatural regenerationNeoplasm MetastasisPathway interactionsPatternPharmaceutical PreparationsPhosphorylationPhysiologic pulseProcessProtein DephosphorylationProteinsShapesSignal TransductionSkeletal muscle structure of neckSomitesSourceSpecific qualifier valueStreamStromal Cell-Derived Factor 1SystemTestingTherapeuticTransgenic OrganismsZebrafishcell behaviorcell growth regulationcell motilitycell typecellular imagingchemokinecofactorepithelial to mesenchymal transitionexperimental studyextracellulargenetic approachhomeodomainhuman diseaseimprovedin vivoinhibitorinsightmigrationmolecular drug targetmuscle regenerationmutantprogenitorpromoterreceptorresponsescreeningsmall molecule librariestissue regenerationtooltranscription factortumortumor progressionvertebrate embryos
项目摘要
Jared Talbot Project summary:
Cell migrations are vital to generating a patterned musculature, but only a few of the cues that
activate the cell’s motility are known and it remains unclear how muscle progenitors decide to
move towards one destination versus another. Here, we will investigate the cues that activate
muscle precursor cell motility (Aim 1) and guide the migrating cells (Aim 2) using zebrafish
embryos as a model system. In vertebrate embryos, muscle precursor cell migration begins with
an epithelial-to-mesenchymal transition (EMT); the cells are then actively guided from somites
to new locations in the body, migrating as mesenchymal cell-streams. In mammalian embryos,
these cell streams originate from several axial levels to generate over 100 muscles in many
body regions. In zebrafish embryos, the homologous migrations are simpler, producing only four
muscles: the two limb muscles, the sole neck muscle, and the chest muscle. Paired with other
zebrafish strengths, this simplicity makes the zebrafish embryo an excellent model system for
understanding muscle precursor cell migrations. We have developed transgenic and mutant
lines that enable us to investigate muscle precursor migration in zebrafish embryos. Using these
tools, we recently demonstrated that the transcription factors six1 and six4 (collectively termed
“six1/4”) are essential for muscle precursor migration in zebrafish. In six1/4 mutants, the muscle
precursors fail to undergo EMT and fail to activate the migration-promoting gene met, which
encodes a metastasis-inducing receptor protein. Although the six1/4 mutants completely lack
precursor migration, this process is only delayed in zebrafish met mutants, suggesting that
six1/4 targets additional genes that stimulate motility. In Aim 1A, we will use an unbiased
chemical screen to identify new molecules that stimulate muscle precursor motility and
guidance. In Aim 1B, we investigate one pathway already suggested by this screen to influence
EMT during this migration. In Aim 2, we will investigate how chemokine signals influence this
migration. Muscle precursors are thought to be attracted by chemokine (Cxcl12) signaling,
which is received by the receptor Cxcr4 and antagonized by the scavenging receptor Ackr3; we
propose that the interplay of these two receptors imparts directionality to muscle precursor
migration. Chemokine signaling will be altered using genetic mutants and chemical modulators.
Cell movement will be analyzed using 3D cell tracking in transgenic embryos. Together these
experiments will provide insights into the initiation and guidance of muscle precursor cells, with
potential application in other migration-dependent processes like muscle regeneration and
metastasis.
贾里德·塔尔伯特项目摘要:
细胞迁移对于产生图案化的肌肉组织至关重要,但只有少数线索可以产生这种变化。
激活细胞的运动性是已知的,但目前尚不清楚肌肉祖细胞如何决定
在这里,我们将研究激活的线索。
使用斑马鱼观察肌肉前体细胞运动(目标 1)并引导细胞迁移(目标 2)
胚胎作为模型系统在脊椎动物胚胎中,肌肉前体细胞迁移开始于。
然后,细胞从体节主动引导至上皮间质转化(EMT);
在哺乳动物胚胎中,作为间充质细胞流迁移到体内的新位置,
这些细胞流起源于多个轴向水平,在许多部位产生 100 多块肌肉
在斑马鱼胚胎中,同源迁移更简单,仅产生四个区域。
肌肉:两肢肌肉、脚底颈部肌肉、胸部肌肉等。
斑马鱼的优势,这种简单性使斑马鱼胚胎成为一个优秀的模型系统
了解肌肉前体细胞迁移我们已经开发出转基因和突变体。
使我们能够利用这些线来研究斑马鱼胚胎中的肌肉前体迁移。
工具,我们最近证明了转录因子 Six1 和 Six4(统称为
“six1/4”)对于斑马鱼的肌肉前体迁移至关重要。
前体细胞未能经历 EMT,也未能激活促进迁移的基因 met,这
尽管 Six1/4 突变体完全缺乏编码转移诱导受体蛋白。
前体迁移,这一过程仅在斑马鱼met突变体中延迟,这表明
Six1/4 的目标是刺激运动的其他基因。在目标 1A 中,我们将使用无偏的基因。
化学筛选来识别刺激肌肉前体运动的新分子
在目标 1B 中,我们研究了该屏幕已经建议的一种影响途径。
在目标 2 中,我们将研究趋化因子信号如何影响这一迁移过程。
肌肉前体细胞被认为是被趋化因子 (Cxcl12) 信号所吸引,
它被受体 Cxcr4 接收并被清除受体 Ackr3 拮抗;
提出这两种受体的相互作用赋予肌肉前体方向性
趋化因子信号传导将通过基因突变和化学调节剂来改变。
将使用转基因胚胎中的 3D 细胞追踪来分析细胞运动。
实验将提供对肌肉前体细胞的启动和指导的见解,
在其他依赖迁移的过程中的潜在应用,例如肌肉再生和
转移。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jared Coffin Talbot其他文献
Jared Coffin Talbot的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jared Coffin Talbot', 18)}}的其他基金
Investigating how Mylpf-regulated sarcomere formation influences limb skeletal development
研究 Mylpf 调节的肌节形成如何影响肢体骨骼发育
- 批准号:
10437165 - 财政年份:2022
- 资助金额:
$ 25.95万 - 项目类别:
相似国自然基金
基于动态信息的深度学习辅助设计成人脊柱畸形手术方案的研究
- 批准号:82372499
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
SMC4/FoxO3a介导的CD38+HLA-DR+CD8+T细胞增殖在成人斯蒂尔病MAS发病中的作用研究
- 批准号:82302025
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
单核细胞产生S100A8/A9放大中性粒细胞炎症反应调控成人Still病发病及病情演变的机制研究
- 批准号:82373465
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
SERPINF1/SRSF6/B7-H3信号通路在成人B-ALL免疫逃逸中的作用及机制研究
- 批准号:82300208
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
MRI融合多组学特征量化高级别成人型弥漫性脑胶质瘤免疫微环境并预测术后复发风险的研究
- 批准号:82302160
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Microglial process convergence following brain injury
脑损伤后小胶质细胞过程收敛
- 批准号:
10657968 - 财政年份:2023
- 资助金额:
$ 25.95万 - 项目类别:
Modeling genetic contributions to biliary atresia
模拟遗传对胆道闭锁的影响
- 批准号:
10639240 - 财政年份:2023
- 资助金额:
$ 25.95万 - 项目类别:
Integration of Brain and Face Morphogenesis in Normal and Disease Phenotypes
正常和疾病表型中大脑和面部形态发生的整合
- 批准号:
10826915 - 财政年份:2023
- 资助金额:
$ 25.95万 - 项目类别:
Microglial process convergence following brain injury
脑损伤后小胶质细胞过程收敛
- 批准号:
10626687 - 财政年份:2022
- 资助金额:
$ 25.95万 - 项目类别:
Developing botanical-derived chemical tools for controlling mosquito vectors
开发植物源化学工具来控制蚊媒
- 批准号:
10596724 - 财政年份:2022
- 资助金额:
$ 25.95万 - 项目类别: