Noncoding DNA regulatory elements and Anopheles vector biology
非编码 DNA 调控元件和按蚊载体生物学
基本信息
- 批准号:10549750
- 负责人:
- 金额:$ 34.75万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-02-01 至 2025-01-31
- 项目状态:未结题
- 来源:
- 关键词:AfricaAllelesAnimalsAnopheles GenusAnopheles gambiaeBehaviorBiologicalBiological AssayBiologyBiteBloodCRISPR/Cas technologyCell LineChromosome ArmChromosomesCodeComplexControl LocusCulicidaeDNADataDetectionDissectionElementsEnhancersFrequenciesGene ExpressionGene SilencingGenesGeneticGenetic Enhancer ElementGenetic MarkersGenetic PolymorphismGenetic RecombinationGenetic VariationGenetic VectorsGenomeGenomicsGenotypeGoalsIndividualInfectionInsecticide ResistanceLinkMalariaMapsMessenger RNAMicroRNAsNatureNucleotidesOrganismOutcomePhenotypePlasmodiumPlasmodium falciparumPopulationPositioning AttributePredispositionPrevalenceProteinsPublishingRegulatory ElementResistanceResolutionScienceSourceSusceptibility GeneTechnologyTestingTimeUntranslated RNAVariantVector Ecologydetection assaydisease phenotypefeedinggenetic analysisgenetic pedigreegenome editinggenome resourcegenome-widegenomic locusinnovationinsightmalaria infectionmalaria transmissionmeetingsmembernovelpublic health relevancetooltranscriptome sequencingvectorvector competencevector mosquito
项目摘要
SUMMARY –The highest global malaria prevalence is in Africa, where the most important vectors are members
of the Anopheles gambiae species complex, including the widespread Anopheles coluzzii. Our long-term goal is
to dissect the natural genetic differences among mosquitoes that underlie malaria transmission, including
differences in malaria susceptibility, ecological adaptation, biting behavior, and insecticide resistance. The
objective of this project is to identify the genetic and functional mechanisms of the known major genomic control
region for natural A. coluzzii susceptibility to wild P. falciparum. This locus is located in a large region of
noncoding DNA on chromosome arm 2L. Frequent alleles in the wild population at this locus strongly influence
susceptible or resistant malaria infection outcomes. The central hypothesis is that genetic polymorphism of
noncoding regulatory elements explains this locus, and therefore an important fraction of vector genetic variation
for P. falciparum infection in nature. The rationale is based on the observation that noncoding genetic
polymorphisms control >90% of phenotypic variation in animals, while protein-coding sequence polymorphism
contributes little to phenotypic variation. The most important noncoding regulatory elements, enhancers, are
responsible for the majority of phenotypic variation. Enhancers are regions ~1 kb in size that modulate target
gene expression levels independent of their distance or physical orientation to the targets. Enhancers cannot be
predicted by sequence signatures, but require functional assays for detection. In an R21 project, we used a high-
throughput functional assay to generate the first comprehensive genome-wide map of enhancers in A. coluzzii,
as well as maps of the other noncoding regulatory elements, microRNAs and long noncoding RNAs (miRNAs
and lncRNAs). Our specific aims will leverage these new genomic resources to study the influence of natural
genetic variation in enhancers and other noncoding regulatory elements for malaria infection outcome: Aim 1)
Genetically resolve the major natural locus regulating wild malaria infection; Aim 2) Prioritize the candidate
noncoding and coding elements within the locus by testing correlation with infection in a wild mosquito panel;
Aim 3) Identify functional mechanisms underlying genetic control of malaria infection. This project is significant
because it will determine for the first time the genetic and functional mechanisms underlying the major genomic
control region for malaria infection of Anopheles in nature. The proposed project is innovative because the effect
of genetic variation of noncoding elements, thought to be the main source of phenotypic variation, has barely
been examined in any species, especially in malaria vector mosquitoes, and no mechanism of genetic control
over vector competence for Plasmodium in nature is currently known. The results are expected to lead to new
malaria control tools rooted in the genome and natural ecology of the vector.
摘要 – 全球疟疾患病率最高的地区是非洲,其中最重要的传播媒介是成员
冈比亚按蚊物种复合体,包括广泛分布的按蚊 我们的长期目标是。
剖析蚊子之间导致疟疾传播的自然遗传差异,包括
疟疾易感性、生态适应、叮咬行为和杀虫剂抗药性方面的差异。
该项目的目标是确定已知主要基因组控制的遗传和功能机制
A. coluzzii 对野生恶性疟原虫的天然易感性区域 该位点位于 A. coluzzii 的大片区域。
染色体臂 2L 上的非编码 DNA 对该位点野生种群中的常见等位基因有强烈影响。
易感性或耐药性疟疾感染结果的中心假设是遗传多态性。
非编码调控元件解释了这个基因座,因此也是载体遗传变异的一个重要部分
恶性疟原虫感染的基本原理是基于非编码遗传的观察。
多态性控制>90%的动物表型变异,而蛋白质编码序列多态性
对表型变异影响不大的最重要的非编码调控元件是增强子。
大部分表型变异的增强子是大小约为 1 kb 的区域,可调节靶标。
基因表达水平不能独立于增强子与靶标的距离或物理方向。
通过序列特征预测,但需要进行功能分析在 R21 项目中,我们使用了高通量检测。
通过通量功能分析生成 A. coluzzii 中第一个全面的全基因组增强子图谱,
以及其他非编码调控元件、microRNA 和长非编码 RNA (miRNA) 的图谱
我们的具体目标是利用这些新的基因组资源来研究自然的影响。
疟疾感染结果的增强子和其他非编码调控元件的遗传变异:目标 1)
从基因上解决调节野生疟疾感染的主要自然位点;目标 2) 优先考虑候选者
通过测试与野生蚊子组中感染的相关性来测试基因座内的非编码和编码元件;
目标 3) 确定疟疾感染遗传控制的功能机制 该项目意义重大。
因为它将首次确定主要基因组背后的遗传和功能机制
所提议的项目具有创新性,因为其效果显着。
非编码元件的遗传变异被认为是表型变异的主要来源,但几乎没有
已在任何物种中进行过检查,特别是在疟疾媒介蚊子中,并且没有遗传控制机制
目前已知对自然界中疟原虫的载体能力的研究结果预计将导致新的结果。
疟疾控制工具植根于媒介基因组和自然生态。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Michelle M Riehle其他文献
Michelle M Riehle的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Michelle M Riehle', 18)}}的其他基金
Noncoding DNA regulatory elements and Anopheles vector biology
非编码 DNA 调控元件和按蚊载体生物学
- 批准号:
10092099 - 财政年份:2020
- 资助金额:
$ 34.75万 - 项目类别:
Noncoding DNA regulatory elements and Anopheles vector biology
非编码 DNA 调控元件和按蚊载体生物学
- 批准号:
10328247 - 财政年份:2020
- 资助金额:
$ 34.75万 - 项目类别:
相似国自然基金
等位基因聚合网络模型的构建及其在叶片茸毛发育中的应用
- 批准号:32370714
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
基于人诱导多能干细胞技术研究突变等位基因特异性敲除治疗1型和2型长QT综合征
- 批准号:82300353
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
肠杆菌多粘菌素异质性耐药中phoPQ等位基因差异介导不同亚群共存的机制研究
- 批准号:82302575
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
ACR11A不同等位基因调控番茄低温胁迫的机理解析
- 批准号:32302535
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
玉米穗行数QTL克隆及优异等位基因型鉴定
- 批准号:
- 批准年份:2022
- 资助金额:55 万元
- 项目类别:面上项目
相似海外基金
Genomic Analysis of Aedes aegypti Host Preference Across Urban-Rural Gradients in Africa
非洲城乡梯度埃及伊蚊寄主偏好的基因组分析
- 批准号:
10525807 - 财政年份:2023
- 资助金额:
$ 34.75万 - 项目类别:
Physical and Neurocognitive Outcomes Among Children with Fetal Alcohol Spectrum Disorder Outcomes (FASD): The Contribution of Maternal Nutrition and Nutrigenetic Risk Factors
胎儿酒精谱系障碍 (FASD) 儿童的身体和神经认知结果:母亲营养和营养遗传风险因素的影响
- 批准号:
10653692 - 财政年份:2022
- 资助金额:
$ 34.75万 - 项目类别:
Plasmodium vivax in a mobile population in northwestern Kenya
肯尼亚西北部流动人口中的间日疟原虫
- 批准号:
10574870 - 财政年份:2022
- 资助金额:
$ 34.75万 - 项目类别:
Physical and Neurocognitive Outcomes Among Children with Fetal Alcohol Spectrum Disorder Outcomes (FASD): The Contribution of Maternal Nutrition and Nutrigenetic Risk Factors
胎儿酒精谱系障碍 (FASD) 儿童的身体和神经认知结果:母亲营养和营养遗传风险因素的影响
- 批准号:
10537692 - 财政年份:2022
- 资助金额:
$ 34.75万 - 项目类别: