Global control of co-transcriptional splicing

共转录剪接的全局控制

基本信息

  • 批准号:
    10549312
  • 负责人:
  • 金额:
    $ 52.04万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-02-01 至 2025-01-31
  • 项目状态:
    未结题

项目摘要

Alternative splicing (AS) of human genes is pervasive and greatly expands the repertoire of protein and RNA products arising from the human genome. AS is critical for cellular differentiation and identity, and its dysregulation has been causally linked with a broad and expanding array of human diseases, including muscular dystrophies, neurodegenerative disorders and cancers. However, we currently have limited insight into the regulation of AS at both the local (gene) and global (genome-wide) levels, due to a lack of tools that provide direct, high-resolution, and quantitative views into the splicing process. This deficit has in turn roadblocked progress in understanding how splicing is regulated to confer cellular identity and to control differentiation processes. The eight introns per average human gene are processed co-transcriptionally through spliceosomal subunits and regulatory factors binding to specific sequences in nascent RNA. These cis-elements are typically within introns and thus act only from when they emerge from RNA polymerase to when they are spliced out. Consequently, in order to dissect splicing regulation mechanisms, we need to determine how fast splicing occurs and the order of intron excision across nascent transcripts. We recently developed nanopore analysis of CO- transcriptional Processing (nano-COP) that measures the kinetics, order and coordination of splicing of endogenous genes in vivo. Nascent RNA is purified and then directly sequenced using the Oxford Nanopore platform to obtain long reads. We found that splicing kinetics is influenced by intron length and proximity to alternatively spliced exons, that splicing order does not follow the order of transcription and that neighboring introns have the propensity to be spliced coordinately at the same time. The goal of this grant is to determine how cis-acting elements and trans-acting factors impact human splicing kinetics, splicing order and splicing coordination. Specific Aim 1: Determine how trans-acting factors impact splicing dynamics. We will study eight RNA-binding proteins that are connected to splicing regulation by our analysis or other studies. To diminish secondary effects, we will use an inducible degradation system to degrade target factors within hours. We will perform subRNA-seq and nano-COP to study splicing dynamics after the loss of each factor. Specific Aim 2: Determine the role of cis-acting elements in dictating splicing dynamics. We will determine how changes to splice site sequences and other cis-elements alter splicing kinetics and alternative splicing. We will use CRISPR-Cas9 and leverage natural genetic variants to study perturbations to cis-elements. Specific Aim 3: Determine the relationship between splicing dynamics and AS during human myogenesis. We hypothesize that key trans-acting factors control splicing kinetics that in turn affect AS. We will study how splicing dynamics change during myogenesis using nano-COP. The roles of myogenesis splicing regulators in controlling splicing dynamics will also be investigated. In sum, changes in splicing kinetics will be associated with AS outcomes to determine models of how splicing is regulated by splicing dynamics.
人类基因的选择性剪接 (AS) 十分普遍,极大地扩展了蛋白质和 RNA 的种类 来自人类基因组的产品。 AS 对于细胞分化和身份至关重要,其 失调与一系列广泛且不断扩大的人类疾病存在因果关系,包括肌肉疾病 营养不良、神经退行性疾病和癌症。然而,目前我们对这一问题的了解还很有限。 由于缺乏提供AS的工具,因此在局部(基因)和全球(全基因组)水平上对AS进行调控 拼接过程的直接、高分辨率和定量视图。这种赤字反过来又阻碍了 在理解如何调节剪接以赋予细胞身份和控制分化方面取得进展 流程。每个人类基因平均有八个内含子通过剪接体进行共转录处理 与新生 RNA 中特定序列结合的亚基和调节因子。这些顺式元件通常是 内含子内,因此仅从它们从 RNA 聚合酶中出现到它们被剪接时发挥作用。 因此,为了剖析剪接调节机制,我们需要确定剪接发生的速度 以及新生转录本中内含子切除的顺序。我们最近开发了 CO- 的纳米孔分析 转录处理(nano-COP),测量剪接的动力学、顺序和协调 体内内源基因。纯化新生 RNA,然后使用 Oxford Nanopore 直接测序 获得长读的平台。我们发现剪接动力学受到内含子长度和邻近性的影响 选择性剪接的外显子,该剪接顺序不遵循转录顺序,并且相邻的外显子 内含子具有同时协调剪接的倾向。这笔赠款的目标是确定 顺式作用元件和反式作用因子如何影响人类剪接动力学、剪接顺序和剪接 协调。具体目标 1:确定反式作用因子如何影响剪接动态。我们将学习八个 通过我们的分析或其他研究,RNA 结合蛋白与剪接调节相关。减少 次要影响,我们将使用诱导降解系统在数小时内降解目标因子。我们将 执行 subRNA-seq 和 nano-COP 以研究每个因子丢失后的剪接动态。具体目标2: 确定顺式作用元件在决定剪接动力学中的作用。我们将确定如何改变拼接 位点序列和其他顺式元件改变剪接动力学和选择性剪接。我们将使用 CRISPR-Cas9 并利用自然遗传变异来研究顺式元素的扰动。具体目标 3:确定 人类肌生成过程中剪接动力学与 AS 之间的关系。我们假设关键交易 因素控制剪接动力学,进而影响 AS。我们将研究剪接动力学如何变化 使用纳米 COP 进行肌生成。肌生成剪接调节因子在控制剪接动力学中的作用将 也受到调查。总之,剪接动力学的变化将与 AS 结果相关联,以确定 剪接如何受剪接动力学调节的模型。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Lee Stirling Churchman其他文献

Lee Stirling Churchman的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Lee Stirling Churchman', 18)}}的其他基金

Global control of co-transcriptional splicing
共转录剪接的全局控制
  • 批准号:
    10334495
  • 财政年份:
    2021
  • 资助金额:
    $ 52.04万
  • 项目类别:
Direct sequencing of nascent RNA to uncover the functional impact of genetic variants on RNA processing
对新生 RNA 进行直接测序,揭示遗传变异对 RNA 加工的功能影响
  • 批准号:
    10372582
  • 财政年份:
    2021
  • 资助金额:
    $ 52.04万
  • 项目类别:
Nuclear-mitochondrial co-regulation during mitochondrial biogenesis
线粒体生物发生过程中核线粒体的共同调节
  • 批准号:
    9289152
  • 财政年份:
    2017
  • 资助金额:
    $ 52.04万
  • 项目类别:
Global measurement of splicing kinetics
剪接动力学的全局测量
  • 批准号:
    9206210
  • 财政年份:
    2016
  • 资助金额:
    $ 52.04万
  • 项目类别:
Mechanisms of Transcriptional Control Revealed by Nascent Transcript Sequencing
新生转录本测序揭示的转录控制机制
  • 批准号:
    9762140
  • 财政年份:
    2013
  • 资助金额:
    $ 52.04万
  • 项目类别:
Mechanisms of Transcriptional Control Revealed by Nascent Transcript Sequencing
新生转录本测序揭示的转录控制机制
  • 批准号:
    9052194
  • 财政年份:
    2013
  • 资助金额:
    $ 52.04万
  • 项目类别:
Mechanisms of Transcriptional Control Revealed by Nascent Transcript Sequencing
新生转录本测序揭示的转录控制机制
  • 批准号:
    10171878
  • 财政年份:
    2013
  • 资助金额:
    $ 52.04万
  • 项目类别:
Mechanisms of Transcriptional Control Revealed by Nascent Transcript Sequencing
新生转录本测序揭示的转录控制机制
  • 批准号:
    9521770
  • 财政年份:
    2013
  • 资助金额:
    $ 52.04万
  • 项目类别:
Mechanisms of Transcriptional Control Revealed by Nascent Transcript Sequencing
新生转录本测序揭示的转录控制机制
  • 批准号:
    8480073
  • 财政年份:
    2013
  • 资助金额:
    $ 52.04万
  • 项目类别:
Mechanisms of Transcriptional Control Revealed by Nascent Transcript Sequencing
新生转录本测序揭示的转录控制机制
  • 批准号:
    10584193
  • 财政年份:
    2013
  • 资助金额:
    $ 52.04万
  • 项目类别:

相似国自然基金

TRIM25介导的泛素化及ISGylation通过选择性剪接和糖代谢调控髓细胞分化
  • 批准号:
    82370111
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
ac4C乙酰化修饰的HnRNP L选择性剪接EIF4G1调控糖代谢重编程介导前列腺癌免疫检查点阻断治疗无应答的机制研究
  • 批准号:
    82303784
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
PRMT5选择性剪接异构体通过甲基化PDCD4调控肝癌辐射敏感性的机制研究
  • 批准号:
    82304081
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
GSE1选择性剪接激活PI3K/Akt通路调控脂质代谢影响衰老进程的机制研究
  • 批准号:
    82360286
  • 批准年份:
    2023
  • 资助金额:
    32.2 万元
  • 项目类别:
    地区科学基金项目
由CathepsinH介导的YAP选择性剪接在辐射诱导细胞死亡及辐射敏感性中的作用
  • 批准号:
    82373527
  • 批准年份:
    2023
  • 资助金额:
    48 万元
  • 项目类别:
    面上项目

相似海外基金

The mechanism of CELF1 upregulation and its role in the pathogenesis of Myotonic Dystrophy Type 1
CELF1上调机制及其在强直性肌营养不良1型发病机制中的作用
  • 批准号:
    10752274
  • 财政年份:
    2024
  • 资助金额:
    $ 52.04万
  • 项目类别:
Genetic and molecular basis of hematopoietic abnormalities in ZTTK syndrome
ZTTK 综合征造血异常的遗传和分子基础
  • 批准号:
    10644169
  • 财政年份:
    2023
  • 资助金额:
    $ 52.04万
  • 项目类别:
The role of membrane homoeostasis of neural stem cell and glioma stem cells in neural development and gliomagenesis
神经干细胞和胶质瘤干细胞膜稳态在神经发育和胶质瘤发生中的作用
  • 批准号:
    10713009
  • 财政年份:
    2023
  • 资助金额:
    $ 52.04万
  • 项目类别:
Cut and paste of myosin binding protein-C in skeletal muscles
骨骼肌中肌球蛋白结合蛋白-C 的剪切和粘贴
  • 批准号:
    10571115
  • 财政年份:
    2023
  • 资助金额:
    $ 52.04万
  • 项目类别:
Formation and function of pathologic stress granules containing RNA-Binding Protein SFPQ in tauopathy
tau蛋白病中含有RNA结合蛋白SFPQ的病理应激颗粒的形成和功能
  • 批准号:
    10581946
  • 财政年份:
    2023
  • 资助金额:
    $ 52.04万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了