A Nanostructured Skin Patch to Heal Chronic Wounds
用于治愈慢性伤口的纳米结构皮肤贴片
基本信息
- 批准号:10548827
- 负责人:
- 金额:$ 40.8万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-02-01 至 2027-01-31
- 项目状态:未结题
- 来源:
- 关键词:AccelerationAddressAffectAmputationAnti-Bacterial AgentsAntibiotic ResistanceAutomobile DrivingBacterial InfectionsBlood VesselsCell ProliferationCellsChitosanChondroitin SulfatesChronicCicatrixClinicalCoculture TechniquesCollagenComplexDevelopmentDevicesDiabetic Foot UlcerEcosystemElectron MicroscopyEnvironmentEpitheliumExposure toExudateFDA approvedFollistatinFoot UlcerFoundationsFundingGoalsHyaluronic AcidImmune responseImmune systemImpaired healingImpairmentIn VitroInfectionInflammationInflammation MediatorsInnovation CorpsInterviewLeg UlcerLibrariesLiquid substanceMacrophageMacrophage ActivationMammalian CellMeasuresMedicalMembraneMetalloproteasesMicrobial BiofilmsModelingMolecularMorbidity - disease rateNanostructuresNanotechnologyNatural regenerationPatch TestsPathway interactionsPatientsPeptidesPolymersPolysaccharidesPredispositionPreventionProcessProliferatingPropertyProteinsRattusResearchResearch Project GrantsRoleScienceSiteSkinSocial ResponsibilityStaphylococcus aureusSterile coveringsSurfaceSystemTestingTherapeuticTissue EngineeringTissuesTreatment EfficacyUnited StatesVenousWound InfectionWound healing therapyangiogenesischronic woundclinically relevantclinically significantcostdesigndiabetic ratdiabetic ulcereffective therapyexperimental studyferumoxytolhealingimprovedin vivoin vivo evaluationiron oxide nanoparticlemigrationmortalitymultidisciplinarynanofibernanoparticlenanoparticle exposurenanoscalenon-healing woundsnovelpreventprogramsrepairedrisk minimizationscaffoldskin damageskin patchsuccesssuperparamagnetismtherapeutic patchwoundwound closurewound dressingwound environmentwound healing
项目摘要
ABSTRACT
Chronic nonhealing wounds are debilitating with high morbidity and mortality. It is widespread and costly to
treat (e.g. ~ $15 billion/year for venous leg ulcers in the United States alone). Despite extensive efforts to
develop therapeutic strategies for effective treatment of chronic wounds, so far, limited clinical success has
been achieved. Currently available devices and products are designed only to target one or more complex
impaired cellular and molecular functions in chronic wounds.
The increasing clinical significance and medical and social responsibilities to treat and cure chronic skin
wounds are driving the demand for development of efficiently designed and fabricated wound-healing devices.
A system that not only possesses the physico-mechanical properties of skin, but also corrects or avoids the
impaired molecular and cellular machinery of chronic wounds, including angiogenesis, epithelial migration and
cell proliferation, unresolved inflammation, and infection, would be a major advance.
The proposed research project is aimed to develop a multifunctional patch with a unique capacity to resume
bodies' capacity to heal chronic wounds. In this regards, we develop a nanoextrusion approach to fabricate a
multifunctional nanofibrous composite patch capable of addressing the main challenges associated with the
healing process of chronic wounds, including i) providing a suitable environment in which cells can easily
proliferate and form new blood vessels; ii) preventing or reducing existing bacterial infection using ferumoxytol
nanoparticles with and without protein corona; and iii) minimizing unbalanced and prolonged inflammation. We
plan to homogeneously incorporate multi-functional biomolecules (e.g., follistatin-like 1, Ac2-26, and
ferumoxytol nanoparticles) within its fibrous framework to accelerate angiogenesis and cell proliferation, while
minimizing the risk of bacterial infection and prolonged inflammation. A wide range of in-vitro and in-vivo
therapeutic efficacy of the novel patches will be conducted. For the in-vivo experiments, we use a rat models of
diabetes provided by Charles River to probe the therapeutic and antibacterial efficacy of the patch. Involved
mechanisms of the cell and immune system interactions with the multifunctional patch will be identified using a
wide range of analysis including advanced electron microscopy.
This study will pave the way for the development of new tissue engineering scaffolds to improve the body's
natural (endogenous) repair mechanisms by redirecting impaired healing pathways, thus providing a unique
opportunity to repair and regenerate damaged skin and tissue in a wide range of chronic wounds.
抽象的
慢性不愈合伤口使人衰弱,发病率和死亡率很高。它广泛存在且成本高昂
治疗(例如,仅在美国每年就花费约 150 亿美元治疗腿部静脉溃疡)。尽管付出了巨大的努力
制定有效治疗慢性伤口的治疗策略,到目前为止,临床成功有限
已实现。当前可用的设备和产品仅针对一种或多种复杂的目标而设计
慢性伤口中细胞和分子功能受损。
治疗和治愈慢性皮肤病的临床意义以及医疗和社会责任日益增加
伤口正在推动开发高效设计和制造的伤口愈合设备的需求。
一个不仅具有皮肤的物理机械特性,而且能够纠正或避免皮肤问题的系统
慢性伤口的分子和细胞机制受损,包括血管生成、上皮迁移和
细胞增殖、未解决的炎症和感染,将是一个重大进步。
拟议的研究项目旨在开发一种具有独特恢复能力的多功能贴片
身体治愈慢性伤口的能力。在这方面,我们开发了一种纳米挤出方法来制造
多功能纳米纤维复合材料补片能够解决与
慢性伤口的愈合过程,包括 i) 提供一个合适的环境,使细胞能够轻松地
增殖并形成新血管; ii) 使用ferumoxytol预防或减少现有的细菌感染
有和没有蛋白质电晕的纳米颗粒; iii) 最大限度地减少不平衡和长期炎症。我们
计划均匀整合多功能生物分子(例如卵泡抑素样 1、Ac2-26 和
ferumoxytol 纳米颗粒)在其纤维框架内加速血管生成和细胞增殖,同时
最大限度地减少细菌感染和长期炎症的风险。广泛的体外和体内
将进行新型贴剂的治疗效果。对于体内实验,我们使用了大鼠模型
Charles River 提供的糖尿病试验,以探究该贴片的治疗和抗菌功效。涉及
细胞和免疫系统与多功能贴片相互作用的机制将通过
广泛的分析,包括先进的电子显微镜。
这项研究将为开发新的组织工程支架铺平道路,以改善人体的
自然(内源性)修复机制,通过重定向受损的愈合途径,从而提供独特的
有机会修复和再生各种慢性伤口中受损的皮肤和组织。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Morteza Mahmoudi其他文献
Morteza Mahmoudi的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Morteza Mahmoudi', 18)}}的其他基金
A Nanostructured Skin Patch to Heal Chronic Wounds
用于治愈慢性伤口的纳米结构皮肤贴片
- 批准号:
10340392 - 财政年份:2022
- 资助金额:
$ 40.8万 - 项目类别:
相似国自然基金
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
相似海外基金
The Proactive and Reactive Neuromechanics of Instability in Aging and Dementia with Lewy Bodies
衰老和路易体痴呆中不稳定的主动和反应神经力学
- 批准号:
10749539 - 财政年份:2024
- 资助金额:
$ 40.8万 - 项目类别:
Clonal hematopoiesis and inherited genetic variation in sickle cell disease
镰状细胞病的克隆造血和遗传变异
- 批准号:
10638404 - 财政年份:2023
- 资助金额:
$ 40.8万 - 项目类别:
Integrative genomic and functional genomic studies to connect variant to function for CAD GWAS loci
整合基因组和功能基因组研究,将 CAD GWAS 位点的变异与功能联系起来
- 批准号:
10639274 - 财政年份:2023
- 资助金额:
$ 40.8万 - 项目类别:
Mitral Regurgitation Quantification Using Dual-venc 4D flow MRI and Deep learning
使用 Dual-venc 4D 流 MRI 和深度学习对二尖瓣反流进行量化
- 批准号:
10648495 - 财政年份:2023
- 资助金额:
$ 40.8万 - 项目类别:
Transfer learning leveraging large-scale transcriptomics to map disrupted gene networks in cardiovascular disease
利用大规模转录组学的转移学习来绘制心血管疾病中被破坏的基因网络
- 批准号:
10696753 - 财政年份:2023
- 资助金额:
$ 40.8万 - 项目类别: