Precise in vivo gene editing of HSPC for the treatment of genetic hematologic diseases
HSPC体内精准基因编辑治疗遗传性血液病
基本信息
- 批准号:10548540
- 负责人:
- 金额:$ 22.95万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-01-01 至 2024-12-31
- 项目状态:已结题
- 来源:
- 关键词:AdultAllogenicAutologousAutologous TransplantationBackBasic ScienceBinding SitesBlood VesselsBone MarrowBone Marrow CellsBone Marrow PurgingCRISPR/Cas technologyCell TherapyCellsChromosome MappingClinical TreatmentClustered Regularly Interspaced Short Palindromic RepeatsDNADNA SequenceDNA Sequence AlterationDNA cassetteDiseaseEndotheliumEngraftmentExtravasationFaceFemurFutureGene DeliveryGene MutationGenesGeneticGuide RNAHematological DiseaseHematopoiesisHematopoieticHematopoietic stem cellsHemoglobinopathiesHumanImmunologicsIn SituInfusion proceduresInsect VirusesMagnetic nanoparticlesMagnetismMammalian CellMediatingMessenger RNAMethodsMicroRNAsMusMutationMyelogenousNanotechnologyPatientsPermeabilityPopulationPost-Translational RegulationRegulator GenesRegulatory ElementRiskSickle Cell AnemiaSiteSpecificitySystemTechniquesTherapeuticToxic effectTransfectionTranslation InitiationTransplantationUntranslated RNAViral Vectoradaptive immunitybeta Globinbeta Thalassemiaclinical applicationclinical translationcomplement systemcostcurative treatmentsdelivery vehicledesigngene correctiongenotoxicityin vivointravenous injectionlipid nanoparticlemRNA Translationmagnetic fieldmouse modelmultidisciplinarynanomedicinenanoparticlenovelnucleasepreclinical studyself-renewalstem cell biologystem cellssuccesssynthetic biologytargeted deliverytherapeutic targettooltransgene deliverytranslational potentialvector
项目摘要
Summary
CRISPR/cas9 gene editing has shown great promise for the treatment of genetic hematologic
disorders including sickle cell disease and β-thalassemia. Current therapeutic strategies are
primarily focused on ex vivo gene editing of autologous patient-derived hematopoietic
stem/progenitor cells (HSPCs), which require isolation of patients’ HSPCs, ex vivo gene editing,
selection and expansion of corrected HSPCs, and transplantation back into the patients.
Despite its initial success, the clinical translation of this technique is hampered by the difficulties
in ex vivo processing of HSPCs, the risks associated with myeloablation, the low engraftment
efficiency, and the prohibitively high cost of individualized cell therapy. Recent studies have
shown that HSPCs are sustained in specialized niches in the adult bone marrow. HSPC niches
are located near the sinusoidal blood vessels, where the fenestrated endothelium is highly
permeable to nanoparticles and viral vectors. To this end, we propose that the HSPCs in the
bone marrow can be gene-edited by CRISPR/cas9 in situ. However, in vivo CRISPR/cas9 gene
editing can have substantial off-target effects due to the systemic dissemination of the delivery
vehicles and the non-specific activities of the cas9 nuclease. Recently, we developed a novel
gene-editing platform that combines the baculoviral vector with magnetic nanoparticles (MNP-
BV). Compared with conventional viral vectors, the baculoviral vector can transduce a broad
range of mammalian cells without replication. MNP-BV uses an external magnetic field and the
intrinsic complement system as the on- and off-switch for site-specific transgene delivery. In this
project, we will develop an MNP-BV-based gene-editing technique for precise gene editing of
HSPCs in the bone marrow. MNP-BV will be administrated via intraosseous infusion. We will
design a magnetic targeting method to enhance the retention of MNP-BV in the bone marrow
and the extravasation of MNP-BV to the perisinusoidal niches. Furthermore, the baculoviral
vector has a large DNA loading capacity (>38 kb) and thus can deliver inducible cas9 or gRNA
expression cassettes targeting specific cell populations. We will design gRNAs that can only be
activated by microRNAs (miRNAs) highly expressed in HSPCs. The central hypothesis is that
by combining intraosseous infusion, magnetic targeting, and miRNA-mediated posttranslational
regulation, the MNP-BV system can efficiently and precisely transduce HSPCs in the bone
marrow and correct hematological diseases-associated gene mutations. The success of this
project will pave the way for developing an effective and low-cost cure for a range of
hematological diseases.
概括
CRISPR/cas9基因编辑在治疗遗传性血液病方面显示出巨大的前景
目前的治疗策略包括镰状细胞病和β-地中海贫血。
主要专注于患者自体造血的离体基因编辑
干/祖细胞(HSPC),需要分离患者的 HSPC、离体基因编辑、
选择和扩增校正后的 HSPC,然后移植回患者体内。
尽管取得了初步成功,但该技术的临床转化却因困难而受到阻碍
在 HSPC 的离体加工中,与清髓相关的风险、低植入率
最近的研究表明,个体化细胞治疗的效率和成本过高。
表明 HSPC 在成人骨髓中的特殊生态位中持续存在。
位于正弦血管附近,有孔内皮高度
为此,我们建议 HSPCs 具有纳米粒子和病毒载体的渗透性。
骨髓可以通过 CRISPR/cas9 进行原位基因编辑,但是体内 CRISPR/cas9 基因。
由于交付的系统性传播,编辑可能会产生严重的脱靶效应
最近,我们开发了一种新型的载体和 cas9 核酸酶的非特异性活性。
将杆状病毒载体与磁性纳米颗粒(MNP-
与传统病毒载体相比,杆状病毒载体可以转导广泛的病毒。
MNP-BV 使用外部磁场和复制的哺乳动物细胞范围。
内在补体系统作为位点特异性转基因递送的开关。
项目中,我们将开发一种基于MNP-BV的基因编辑技术,用于精确的基因编辑
骨髓中的 HSPC 将通过骨内输注进行给药。
设计一种磁性靶向方法来增强 MNP-BV 在骨髓中的保留
以及 MNP-BV 外渗到窦周微环境 此外,杆状病毒。
载体具有较大的 DNA 负载能力 (>38 kb),因此可以传递诱导型 cas9 或 gRNA
我们将设计只能针对特定细胞群的表达盒。
由 HSPC 中高表达的 microRNA (miRNA) 激活。
通过结合骨内输注、磁性靶向和 miRNA 介导的翻译后
调节,MNP-BV系统可以高效、精确地转导骨中的HSPC
骨髓和纠正血液疾病相关基因突变的成功。
该项目将为开发一种有效且低成本的治疗方法铺平道路
血液系统疾病。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Sheng Tong其他文献
Sheng Tong的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Sheng Tong', 18)}}的其他基金
Controllable In Vivo Genome Editing for Immune-Checkpoint Blockade in Solid Tumors
用于实体瘤免疫检查点封锁的可控体内基因组编辑
- 批准号:
9767834 - 财政年份:2018
- 资助金额:
$ 22.95万 - 项目类别:
Controllable In Vivo Genome Editing for Immune-Checkpoint Blockade in Solid Tumors
用于实体瘤免疫检查点封锁的可控体内基因组编辑
- 批准号:
10456001 - 财政年份:2018
- 资助金额:
$ 22.95万 - 项目类别:
Controllable In Vivo Genome Editing for Immune-Checkpoint Blockade in Solid Tumors
用于实体瘤免疫检查点封锁的可控体内基因组编辑
- 批准号:
10047963 - 财政年份:2018
- 资助金额:
$ 22.95万 - 项目类别:
Controllable In Vivo Genome Editing for Immune-Checkpoint Blockade in Solid Tumors
用于实体瘤免疫检查点封锁的可控体内基因组编辑
- 批准号:
9939589 - 财政年份:2018
- 资助金额:
$ 22.95万 - 项目类别:
相似国自然基金
抗骨髓瘤的新型同种异体嵌合抗原受体T(CAR T)细胞疗法研发
- 批准号:82270210
- 批准年份:2022
- 资助金额:68 万元
- 项目类别:面上项目
胸腺上皮细胞在小鼠后肢同种异体复合组织移植中的免疫调节作用及相关机制研究
- 批准号:82102354
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
过表达MicroRNA-199a-3p的BMSCs来源的外泌体抑制小鼠DC功能诱导同种异体心脏移植免疫耐受的机制研究
- 批准号:82160081
- 批准年份:2021
- 资助金额:34 万元
- 项目类别:地区科学基金项目
m6A甲基转移酶Zc3h13调控同种异体iPSCs的免疫原性构建新型心肌补片的研究
- 批准号:
- 批准年份:2020
- 资助金额:24 万元
- 项目类别:青年科学基金项目
具有靶向识别和序贯治疗功能的纳米微球对血管化同种异体复合组织移植术后免疫抑制的研究
- 批准号:
- 批准年份:2020
- 资助金额:24 万元
- 项目类别:青年科学基金项目
相似海外基金
Clonal hematopoiesis and inherited genetic variation in sickle cell disease
镰状细胞病的克隆造血和遗传变异
- 批准号:
10638404 - 财政年份:2023
- 资助金额:
$ 22.95万 - 项目类别:
Novel therapeutic gene editing to induce fetal hemoglobin for sickle cell disease
诱导胎儿血红蛋白治疗镰状细胞病的新型治疗性基因编辑
- 批准号:
10587901 - 财政年份:2023
- 资助金额:
$ 22.95万 - 项目类别:
Project 4: Off-the-shelf engineered cord blood-derived natural killer cells for the treatment acute lymphoblastic leukemia
项目 4:现成的工程化脐带血自然杀伤细胞,用于治疗急性淋巴细胞白血病
- 批准号:
10931069 - 财政年份:2023
- 资助金额:
$ 22.95万 - 项目类别:
Label-free single-cell imaging for quality control of cardiomyocyte biomanufacturing
用于心肌细胞生物制造质量控制的无标记单细胞成像
- 批准号:
10675976 - 财政年份:2023
- 资助金额:
$ 22.95万 - 项目类别:
Inhalation Delivery of Exosome and microRNA Therapy for Lung Fibrosis
吸入外泌体和 microRNA 治疗肺纤维化
- 批准号:
10643908 - 财政年份:2022
- 资助金额:
$ 22.95万 - 项目类别: