PTEN promoter hypermethylation underlies vascular disease progression
PTEN 启动子高甲基化是血管疾病进展的基础
基本信息
- 批准号:10543851
- 负责人:
- 金额:$ 57.37万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-01-20 至 2024-12-31
- 项目状态:已结题
- 来源:
- 关键词:AcuteAngiotensin IIArterial Fatty StreakArteriesAtherosclerosisAzacitidineBiological AssayBlood VesselsCRISPR/Cas technologyCellsChromatinChronicComplexCoronary arteryDNADNA MethylationDNA Modification MethylasesDataDisease ProgressionDown-RegulationEtiologyEventFibrosisGenesGenetic TranscriptionGenomicsHumanHypermethylationIn SituIn Situ HybridizationIn VitroInflammationInflammatoryInjuryKnockout MiceLigationMacrophageManuscriptsMediatingMethylationModelingMolecularMusMuscleMyelogenousNuclearPIK3CG genePTEN genePathogenicityPathologicPhenotypePhosphoric Monoester HydrolasesPlatelet-Derived Growth FactorPlayPublishingRegulationReporterRepressionRoleSignaling MoleculeSiteSmooth Muscle MyocytesStentsStimulusTestingTherapeuticTranscriptional RegulationUp-RegulationVascular DiseasesVascular Smooth MuscleVascular remodelingbisulfitecell dedifferentiationcofactordesignhigh throughput screeninghuman diseasein vivoinflammatory milieuinhibitormouse modelmyocardinneointima formationnovelnovel therapeuticspharmacologicpreservationpreventpromoterprotective effectpublic health relevancepyrosequencingrecruitrestenosissmall moleculetherapeutic targettranscription factor
项目摘要
ABSTRACT
Atherosclerosis and restenosis are chronic and acute inflammatory vascular diseases, respectively,
characterized by significant vascular remodeling. Phenotypic switching of resident vascular smooth muscle cells
(SMCs) plays a unique and critical role in remodeling and is a key event promoting disease progression. While
the concept of SMC phenotypic modulation, marked by a shift from a differentiated, contractile phenotype to a
dedifferentiated, pro-inflammatory phenotype, is well-accepted, the mechanisms regulating these SMC
transitions are complex. Importantly, there are no therapeutics that prevent both the loss of the SMC contractile
phenotype and increased inflammation. We previously established that PTEN is critical in the regulation of
pathological vascular remodeling. PTEN inactivation promotes a dedifferentiated, inflammatory SMC phenotype.
More recently, we defined an entirely unique and essential function for nuclear PTEN as a transcriptional co-
factor with SRF, a master transcription factor regulating SMC contractile gene and SMC-specific miR-143/145
expression, and its muscle-specific cofactor, myocardin. PTEN loss prevents SRF-myocardin transcriptional
activity. Translationally significant, this activity was confirmed in normal and diseased human coronary arteries
as we established that PTEN loss directly correlated with SMC dedifferentiation and atherosclerosis progression
and complexity. The mechanism mediating loss of PTEN in this setting was unclear. We recently demonstrated
that systemic PTEN elevation blunts angiotensin II (AngII)-mediated vascular remodeling and fibrosis and blocks
atherosclerotic lesion progression and injury-mediated neointima formation; these effects are associated with
preservation of a contractile SMC phenotype and a reduced inflammatory microenvironment. Thus, our data
support that PTEN is an essential driver of the differentiated SMC phenotype through direct transcriptional control
of SMC contractile genes and repression of a proinflammatory phenotype and indicate that systemic PTEN
upregulation is sufficient to prevent vascular disease progression. A recent unbiased high throughput screen
designed to discover novel small molecule activators of PTEN revealed that the DNA methyltransferase 1
(DNMT1) inhibitor, 5-azacytidine (5-aza), robustly upregulates PTEN at the level of transcription, reverses
PDGF-mediated SMC dedifferentiation and repression of the DNA methylcytosine deoxygenase, TET2, and
blocks pathological vascular remodeling. Importantly, these effects both in vitro and in vivo are mediated via
PTEN. We propose that hypermethylation of the PTEN gene is an essential mechanism that reduces PTEN
levels and promotes pathological vascular remodeling (Aim One). In addition, we propose that the vascular
protective effects mediated by 5-aza are driven through increased PTEN expression, crosstalk between PTEN
and TET2, and downstream regulation of miR-143/145 (Aim Two). Finally, we propose that increased PTEN
promoter hypermethylation correlates with increased atherosclerosis progression, upregulation of DNMT1, and
downregulation of TET2 in diseased human vessels (Aim Three).
抽象的
动脉粥样硬化和再狭窄分别是慢性和急性炎症性血管疾病,
其特征是显着的血管重塑。常驻血管平滑肌细胞的表型转换
(SMC)在重塑中发挥着独特而关键的作用,是促进疾病进展的关键事件。尽管
SMC表型调节的概念,其标志是从分化的收缩表型转变为
去分化、促炎表型已被广泛接受,调节这些 SMC 的机制
过渡是复杂的。重要的是,没有任何治疗方法可以防止 SMC 收缩性的丧失
表型和炎症增加。我们之前确定 PTEN 在调节中至关重要
病理性血管重塑。 PTEN 失活会促进去分化、炎症性 SMC 表型。
最近,我们定义了核 PTEN 的一个完全独特且重要的功能,作为转录辅助因子。
具有 SRF 的因子,SRF 是调节 SMC 收缩基因的主转录因子和 SMC 特异性 miR-143/145
表达及其肌肉特异性辅助因子心肌素。 PTEN 丢失阻止 SRF-心肌素转录
活动。具有转化意义,该活性在正常和患病的人类冠状动脉中得到证实
我们确定 PTEN 缺失与 SMC 去分化和动脉粥样硬化进展直接相关
和复杂性。在这种情况下介导 PTEN 丢失的机制尚不清楚。我们最近展示了
全身性 PTEN 升高会减弱血管紧张素 II (AngII) 介导的血管重塑和纤维化并阻断
动脉粥样硬化病变进展和损伤介导的新内膜形成;这些影响与
保持收缩性 SMC 表型和减少炎症微环境。因此,我们的数据
支持 PTEN 通过直接转录控制是分化 SMC 表型的重要驱动因素
SMC 收缩基因的变化和促炎表型的抑制,表明系统性 PTEN
上调足以预防血管疾病进展。最近的无偏高通量筛选
旨在发现 PTEN 的新型小分子激活剂,结果表明 DNA 甲基转移酶 1
(DNMT1) 抑制剂 5-氮杂胞苷 (5-aza) 在转录水平上强力上调 PTEN,逆转
PDGF介导的SMC去分化和DNA甲基胞嘧啶脱氧酶、TET2和的抑制
阻断病理性血管重塑。重要的是,这些体外和体内效应都是通过
PTEN。我们认为 PTEN 基因的高甲基化是减少 PTEN 的重要机制
水平并促进病理性血管重塑(目标一)。此外,我们建议血管
5-aza介导的保护作用是通过增加PTEN表达、PTEN之间的串扰来驱动的
和 TET2,以及 miR-143/145 的下游调节(目标二)。最后,我们建议增加PTEN
启动子高甲基化与动脉粥样硬化进展加剧、DNMT1 上调和
患病人类血管中 TET2 的下调(目标三)。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Mary Cm. Weiser-Evans其他文献
Mary Cm. Weiser-Evans的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Mary Cm. Weiser-Evans', 18)}}的其他基金
PTEN promoter hypermethylation underlies vascular disease progression
PTEN 启动子高甲基化是血管疾病进展的基础
- 批准号:
10330591 - 财政年份:2021
- 资助金额:
$ 57.37万 - 项目类别:
PTEN-dependent regulation of SRF transcriptional activity and SMC phenotype control
SRF 转录活性的 PTEN 依赖性调节和 SMC 表型控制
- 批准号:
9247031 - 财政年份:2015
- 资助金额:
$ 57.37万 - 项目类别:
Reprogramming of mature smooth muscle cells to vascular progenitor cells
成熟平滑肌细胞重编程为血管祖细胞
- 批准号:
8967222 - 财政年份:2014
- 资助金额:
$ 57.37万 - 项目类别:
Microenvironmental Endogenous Reprogramming of Differentiated Smooth Muscle Cells
分化平滑肌细胞的微环境内源性重编程
- 批准号:
8666806 - 财政年份:2013
- 资助金额:
$ 57.37万 - 项目类别:
Microenvironmental Endogenous Reprogramming of Differentiated Smooth Muscle Cells
分化平滑肌细胞的微环境内源性重编程
- 批准号:
8451768 - 财政年份:2013
- 资助金额:
$ 57.37万 - 项目类别:
Role of PTEN in Hypoxia-Induced Vascular Remodeling, Raphael Nemenoff
PTEN 在缺氧诱导的血管重塑中的作用,Raphael Nemenoff
- 批准号:
7662790 - 财政年份:2009
- 资助金额:
$ 57.37万 - 项目类别:
相似国自然基金
PKCε-Rab11介导KCNQ1通道膜蛋白下调促进血管紧张素II诱导的心肌肥厚致心律失常的机制研究
- 批准号:82204397
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
血管紧张素II活化的钙振荡在TBI后PSH相关的神经功能损害中的作用与机制研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
血管紧张素II2型受体在血管损伤中抑制周围脂肪组织功能失调的作用及机制研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
LncRNA XIST通过micRNA-144-3p靶向Nrf2调控血管紧张素II引起心肌损伤的机制
- 批准号:
- 批准年份:2021
- 资助金额:55 万元
- 项目类别:面上项目
血管紧张素II调控ATF3诱导铁死亡促进心梗后心室重构的机制研究
- 批准号:82000249
- 批准年份:2020
- 资助金额:24 万元
- 项目类别:青年科学基金项目
相似海外基金
PTEN promoter hypermethylation underlies vascular disease progression
PTEN 启动子高甲基化是血管疾病进展的基础
- 批准号:
10330591 - 财政年份:2021
- 资助金额:
$ 57.37万 - 项目类别:
Multimodal Peptide Amphiphile Micelles for Atherosclerosis
用于治疗动脉粥样硬化的多模式肽两亲胶束
- 批准号:
9321402 - 财政年份:2015
- 资助金额:
$ 57.37万 - 项目类别:
p90RSK-ERK5 module, efferocytosis, and vulnerable plaque formation
p90RSK-ERK5 模块、胞吞作用和易损斑块形成
- 批准号:
8865813 - 财政年份:2014
- 资助金额:
$ 57.37万 - 项目类别:
p90RSK-ERK5 module, efferocytosis, and vulnerable plaque formation
p90RSK-ERK5 模块、胞吞作用和易损斑块形成
- 批准号:
9088491 - 财政年份:2014
- 资助金额:
$ 57.37万 - 项目类别:
A high-density lipoprotein-based theranostic nanoparticle platform for atherosclerosis
基于高密度脂蛋白的动脉粥样硬化治疗诊断纳米颗粒平台
- 批准号:
8903508 - 财政年份:2014
- 资助金额:
$ 57.37万 - 项目类别: