Decoding mechanotransduction mechanisms of cell-surface receptors
解码细胞表面受体的机械转导机制
基本信息
- 批准号:10542757
- 负责人:
- 金额:$ 41.42万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-07-20 至 2026-11-30
- 项目状态:未结题
- 来源:
- 关键词:AntigensAreaBiochemicalBiologicalBiophysicsCRISPR screenCell Surface ProteinsCell Surface ReceptorsCell physiologyCellsCharacteristicsClustered Regularly Interspaced Short Palindromic RepeatsCreativenessDNADevelopmentDiagnosisDiseaseEngineeringEnvironmentExplosionGlioblastomaHeart DiseasesIndividualIntuitionLeftLinkMalignant NeoplasmsMass Spectrum AnalysisMeasuresMechanicsMedicineMolecularMolecular ConformationMuscular DystrophiesMutationNanostructuresPhenotypePolycystic Kidney DiseasesProcessProteinsProteolysisRNA BindingResearchScienceSignal PathwaySignal TransductionSpecificityT-LymphocyteTechnologyTestingTherapeuticTissuesVisioncell motilitycell typecellular imagingdiagnostic toolendonucleaseimprovedinnovationlink proteinmechanical forcemechanical signalmechanical stimulusmechanotransductionnotch proteinnovel therapeuticsprogramsreceptorresponsesensorstem cell differentiationtechnological innovationtechnology development
项目摘要
PROJECT SUMMARY
Recently, it has become apparent that mechanical cues in the cellular microenvironment drive cell migration,
stem cell differentiation into distinct cell types and even how a surveilling T-cells is triggered by its correct antigen,
solidifying tension-sensing as a key regulatory switch in cellular function. Not surprisingly, alteration of
mechanical forces is an emerging factor in diseases like cancer, which makes intuitive sense given that diagnosis
often involves detecting a lump that feels harder and stiffer than the surrounding tissue. Indeed, distinct and
quantifiable “mechanical phenotypes” of normal and diseased cells/tissues have been measured. Underlying
these cellular “mechanical phenotypes” characteristic of normal and diseased cellular microenvironments are
mechanosensing proteins that convert sensed physical perturbations into biochemical signals in a process
known as mechanotransduction. These signaling pathways are putative targets of emerging “mechano-
therapeutic” strategies aimed to correct aberrant mechanical phenotypes. The overall vision of the Gordon lab
is to innovate technology to identify the molecular players underlying disease-relevant mechanical-phenotypes,
and dissect their tension-sensing mechanisms to cure disease. The greatest challenge to determining the
molecular basis of force sensing is that the technology to measure picoNewton (pN) forces sensed by an
individual protein in the context of the cell emerged only ten years ago, and is still under constant development.
This has crippled identification of new mechanosensing proteins involved in a given cellular or disease process
and also left a huge gap in testable hypotheses regarding how force alters the conformation of receptors to
trigger a biological response. Our lab has established three major areas to tackle this problem that blend
technology development and hypothesis driven questions. Program I. In combination with cellular imaging, we
develop and use molecular tension sensors (MTS) to measure forces sensed by hypothesized mechanosensing
proteins in the cellular context. We plan to combine MTS and CRISPR screens to identify mechanosensors
involved in glioblastoma and T-cell migration. Program II. Second, we aim to test the hypothesis that proteolysis
of receptors is a mechanism to convey mechanical stimuli. We will use structural biophysics to study newly
identified Notch-like proteolytic switches and use CRISPR-tagging and mass spectrometry to study global
receptor proteolysis in response to applied force. Program III. Finally, our lab has expanded into a third area-
function and application of HUH-endonucleases as “HUH-tags” to covalently link proteins and DNA. We plan to
engineer sequence specificity and RNA-binding of HUH-tags. We are poised to use HUH-tags to improve DNA-
based MTS and to link mechanosensing-domains to DNA-nanostructures to coax proteins into mechanically
activated conformations. The interleaving of new protein-DNA conjugation technology with hypothesis driven
research drives creative and innovative approaches to important problems in biomedical science and medicine.
1
项目概要
最近,细胞微环境中的机械信号驱动细胞迁移已经变得很明显,
干细胞分化成不同的细胞类型,甚至监视 T 细胞如何被其正确的抗原触发,
巩固张力感应作为细胞功能的关键调节开关,这并不奇怪。
机械力是癌症等疾病中的一个新兴因素,考虑到诊断结果,这具有直观意义
通常涉及检测感觉比周围组织更硬、更硬的肿块。
正常和患病细胞/组织的可量化“机械表型”已被测量。
正常和患病细胞微环境的这些细胞“机械表型”特征是
机械传感蛋白将感知到的物理扰动转化为过程中的生化信号
这些信号通路是新兴“机械传导”的假定目标。
戈登实验室的总体愿景是“治疗”策略,旨在纠正异常的机械表型。
是创新技术来识别疾病相关机械表型的分子参与者,
并剖析其治疗疾病的张力感应机制。
力传感的分子基础是测量皮牛顿 (pN) 力的技术
细胞中的单个蛋白质仅在十年前出现,并且仍在不断发展中。
这削弱了对特定细胞或疾病过程中涉及的新机械传感蛋白的识别
并且在关于力如何改变受体构象的可检验假设方面也留下了巨大的空白
我们的实验室已经建立了三个主要领域来解决这个问题。
技术开发和假设驱动的问题。 结合细胞成像,我们。
开发并使用分子张力传感器 (MTS) 来测量通过捕获的机械传感检测到的力
我们计划结合 MTS 和 CRISPR 筛选来识别机械传感器。
计划 II 涉及胶质母细胞瘤和 T 细胞迁移,目的是检验蛋白水解的假设。
受体的机制是传递机械刺激的机制,我们将利用结构生物物理学来进行新的研究。
鉴定出 Notch 样蛋白水解开关,并使用 CRISPR 标记和质谱分析来研究全局
最后,我们的实验室扩展到了第三个领域——
HUH 核酸内切酶作为“HUH 标签”共价连接蛋白质和 DNA 的功能和应用。
设计 HUH 标签的序列特异性和 RNA 结合 我们准备使用 HUH 标签来改进 DNA 。
基于 MTS 并将机械传感域连接到 DNA 纳米结构,以机械方式诱导蛋白质
新蛋白质-DNA 缀合技术与假设驱动的交错。
研究推动了生物医学科学和医学中重要问题的创造性和创新性方法。
1
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
WENDY RYAN GORDON其他文献
WENDY RYAN GORDON的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('WENDY RYAN GORDON', 18)}}的其他基金
Engineering Protein Modulators of Notch Activation for T-cell immunotherapy
用于 T 细胞免疫治疗的 Notch 激活的工程蛋白质调节剂
- 批准号:
10612995 - 财政年份:2023
- 资助金额:
$ 41.42万 - 项目类别:
Decoding mechanotransduction mechanisms of cell-surface receptors
解码细胞表面受体的机械转导机制
- 批准号:
9897757 - 财政年份:2016
- 资助金额:
$ 41.42万 - 项目类别:
Decoding mechanotransduction mechanisms of cell-surface receptors
解码细胞表面受体的机械转导机制
- 批准号:
10330300 - 财政年份:2016
- 资助金额:
$ 41.42万 - 项目类别:
Decoding mechanotransduction mechanisms of cell-surface receptors
解码细胞表面受体的机械转导机制
- 批准号:
9319295 - 财政年份:2016
- 资助金额:
$ 41.42万 - 项目类别:
相似国自然基金
多区域环境因素复杂暴露反应关系的空间联合估计方法研究
- 批准号:82373689
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
区域出口产品升级的时空格局及机制研究——以粤港澳大湾区为例
- 批准号:42301182
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
多入口下穿隧道合流区域交通事故演化机理与自解释调控方法
- 批准号:52302437
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
应对多重不确定性的区域综合能源系统分布渐进调度理论研究
- 批准号:52377108
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
异质性视角下稻米区域公用品牌价值攀升协同治理机制研究
- 批准号:72373129
- 批准年份:2023
- 资助金额:41 万元
- 项目类别:面上项目
相似海外基金
The role for ER associated degradation (ERAD) in T cell homeostasis and memory
ER 相关降解 (ERAD) 在 T 细胞稳态和记忆中的作用
- 批准号:
10582915 - 财政年份:2023
- 资助金额:
$ 41.42万 - 项目类别:
Generation and characterization of a novel mouse line to elucidate CHTF18 function in male and female meiosis
新型小鼠品系的产生和表征,以阐明 CHTF18 在雄性和雌性减数分裂中的功能
- 批准号:
10452959 - 财政年份:2022
- 资助金额:
$ 41.42万 - 项目类别:
Computational and Experimental Studies of Protein Structure and Design
蛋白质结构和设计的计算和实验研究
- 批准号:
10554322 - 财政年份:2022
- 资助金额:
$ 41.42万 - 项目类别:
Targeting CNS Neuroinflammation in Traumatic Brain Injury by Nasal Anti-CD3
通过鼻抗 CD3 靶向治疗创伤性脑损伤中的 CNS 神经炎症
- 批准号:
10449540 - 财政年份:2022
- 资助金额:
$ 41.42万 - 项目类别: