Vascular Growth and Regeneration
血管生长和再生
基本信息
- 批准号:10542405
- 负责人:
- 金额:$ 96万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-02-07 至 2025-01-31
- 项目状态:未结题
- 来源:
- 关键词:AccelerationAcuteAddressAgingAwardBiological ProcessBlood VesselsCell CycleCell PolarityCellsCellular biologyChemical InjuryChronicChronic DiseaseDataEndothelial CellsEndotheliumGene Expression ProfileGeneticGoalsGrantGrowthHeterogeneityHourHumanImpairmentInflammationInjuryIntercellular JunctionsInterventionKnowledgeLengthMediatingMedicalMetabolismMolecularMusNational Heart, Lung, and Blood InstituteNatural regenerationOutcomePathway interactionsPhysiologicalProcessProliferatingResearch PersonnelSeriesSignal TransductionStentsStressTherapeutic InterventionTraumaTubeTunica IntimaWidthangiogenesisblood perfusioncell regenerationchromatin remodelingeffective therapyendothelial regenerationendothelial repairhealingin vivointercalationmonolayernew therapeutic targetpreventprogenitorregenerativerepairedresponserestenosistranslational impacttranslational potentialvascular bedwound
项目摘要
PROJECT DESCRIPTION / SUMMARY
Much of our collective knowledge on vascular growth has emerged from efforts to understand angiogenesis,
a process by which endothelial cells depart from pre-existent vessels to form new vascular beds.
Nonetheless, once formed, vascular tubes also expand in width, length, and are able to regenerate.
Regeneration is extremely important to the repair of endothelial damage imposed by stents and other
medical devises, as well as to mediate heal after physical/chemical trauma. However our understanding of
the cellular and molecular mechanisms that regulate endothelial growth and regeneration within the context
of a fully functional, blood perfused and pulsatile vessel are limited. Our preliminary data show that
expansion of the tunica intima in vivo occurs through intrinsic proliferation of intimal endothelial cells in a
polarized and organized manner. In fact, a subset of endothelial cells flanking a wound are robustly induced
to enter into the cell cycle as quickly as 12 hours following injury in a highly synchronized fashion. The
process is initiated by changes in cell-cell junctions that trigger molecular rewiring and impressive
physiological changes. Important outcomes of these responses include alterations in endothelial cell
polarity, induction of chromatin remodeling, adjustments in metabolism and a quick emergence of a
transcriptional signature that is unique to regenerative endothelium. This newly identified signature is finely
tuned by the timed release of stress signals that appear to act differentially in the subsets of endothelial
cells, revealing an intrinsic heterogeneity that controls the threshold for regeneration in a given vessel. In
fact, genetic tracing analysis using endothelial-specific rainbow mice revealed the presence of cells with
different proliferative potential suggesting the intercalation of progenitors within the wall of the endothelial
monolayer. Taken together, these studies are paradigm shifting for understanding the mechanisms
controlling endothelial regeneration and their deregulations in settings like chronic/acute inflammation,
aging, chronic diseases and physical trauma.
Through this NHLBI Outstanding Investigator Award application our goals are to (1) decode the cellular and
molecular mechanisms controlling the process of endothelial expansion within a formed vessel; (2) clarify
the process involved in endothelial regeneration and repair: (3) understand how hijacking these
mechanisms might either accelerate or impair endothelial regeneration; (4) identify novel targets for
therapeutic interventions aimed at endothelial repair during stenting or other injuries. These series of
broadly defined aims have been conceptualize to fill gaps of our knowledge on fundamental biological
processes in endothelial cell biology but also to exploit this information for application during medical
interventions such as stent coverage. We are energized by the opportunity afforded by this grant
mechanism and for the potential translational impact of these studies.
项目描述/摘要
我们关于血管生长的大部分集体知识都来自于对血管生成的理解,
内皮细胞离开先前存在的血管形成新血管床的过程。
尽管如此,一旦形成,血管的宽度和长度也会扩张,并且能够再生。
再生对于支架和其他药物造成的内皮损伤的修复极其重要
医疗设备,以及调解物理/化学创伤后的愈合。然而我们的理解
调节内皮生长和再生的细胞和分子机制
功能齐全、血液灌注和搏动的血管是有限的。我们的初步数据表明
体内内膜的扩张是通过内膜内皮细胞的内在增殖而发生的
两极分化和有组织的方式。事实上,伤口侧翼的内皮细胞子集被强烈诱导
损伤后 12 小时内以高度同步的方式进入细胞周期。这
该过程是由细胞与细胞连接的变化启动的,这些变化触发分子重新布线并令人印象深刻
生理变化。这些反应的重要结果包括内皮细胞的改变
极性、染色质重塑的诱导、新陈代谢的调整以及快速出现
再生内皮细胞特有的转录特征。这个新识别的签名很好
通过压力信号的定时释放进行调节,这些信号在内皮细胞亚群中表现出不同的作用
细胞,揭示了控制给定血管再生阈值的内在异质性。在
事实上,使用内皮特异性彩虹小鼠进行的基因追踪分析揭示了具有以下特征的细胞的存在:
不同的增殖潜力表明祖细胞嵌入内皮细胞壁内
单层。总的来说,这些研究是理解机制的范式转变
在慢性/急性炎症等环境中控制内皮再生及其失调,
衰老、慢性疾病和身体创伤。
通过 NHLBI 杰出研究者奖申请,我们的目标是 (1) 解码细胞和
控制已形成血管内皮扩张过程的分子机制; (2)澄清
内皮再生和修复的过程:(3)了解如何劫持这些
机制可能加速或损害内皮再生; (4) 确定新靶标
旨在支架植入或其他损伤期间内皮修复的治疗干预措施。这一系列的
广泛定义的目标已被概念化,以填补我们在基本生物学方面的知识空白
内皮细胞生物学过程,而且还利用这些信息在医疗过程中应用
支架覆盖等干预措施。这笔赠款提供的机会让我们充满活力
机制以及这些研究的潜在转化影响。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
M. LUISA IRUELA-ARISPE其他文献
M. LUISA IRUELA-ARISPE的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('M. LUISA IRUELA-ARISPE', 18)}}的其他基金
REWIRING CANCER-INDUCED ABNORMALITIES IN THE VASCULAR BARRIER
重塑血管屏障中癌症引起的异常
- 批准号:
10915752 - 财政年份:2023
- 资助金额:
$ 96万 - 项目类别:
Targeting VEGF-mediated Tumor Angiogenesis in Cancer Therapy
癌症治疗中靶向 VEGF 介导的肿瘤血管生成
- 批准号:
8719790 - 财政年份:2014
- 资助金额:
$ 96万 - 项目类别:
16th Annual International Vascular Biology Meeting
第 16 届国际血管生物学年会
- 批准号:
7915981 - 财政年份:2010
- 资助金额:
$ 96万 - 项目类别:
相似国自然基金
剪接因子U2AF1突变在急性髓系白血病原发耐药中的机制研究
- 批准号:82370157
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
IKZF1-N159Y/S热点突变在急性白血病中的致病机制研究
- 批准号:82300168
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
NMNAT1上调B7-H3介导急性早幼粒细胞白血病免疫逃逸的作用和机制研究
- 批准号:82300169
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
支链氨基酸转氨酶1在核心结合因子急性髓细胞白血病中的异常激活与促进白血病发生的分子机制研究
- 批准号:82370178
- 批准年份:2023
- 资助金额:48 万元
- 项目类别:面上项目
SRSF3/LRP5/Wnt信号通路在急性淋巴细胞白血病中的作用及机制研究
- 批准号:82370128
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
相似海外基金
Targeting P21 positive senescent cells for alleviating TMJ degeneration
靶向 P21 阳性衰老细胞减轻 TMJ 变性
- 批准号:
10892710 - 财政年份:2023
- 资助金额:
$ 96万 - 项目类别:
Evaluating the impacts of sea level rise on migration and wellbeing in coastal communities
评估海平面上升对沿海社区移民和福祉的影响
- 批准号:
10723570 - 财政年份:2023
- 资助金额:
$ 96万 - 项目类别:
Mechanisms underlying mustard gas-induced conjunctival injury and use of lipid mediators as medical countermeasures
芥子气引起的结膜损伤的机制以及脂质介质作为医疗对策的使用
- 批准号:
10882060 - 财政年份:2023
- 资助金额:
$ 96万 - 项目类别:
3/4-American Consortium of Early Liver Transplantation-Prospective Alcohol-associated liver disease Cohort Evaluation (ACCELERATE-PACE)
3/4-美国早期肝移植联盟-前瞻性酒精相关性肝病队列评估(ACCELERATE-PACE)
- 批准号:
10711001 - 财政年份:2023
- 资助金额:
$ 96万 - 项目类别: