Parsing early emerging heterogeneity related to autism spectrum disorder
解析与自闭症谱系障碍相关的早期出现的异质性
基本信息
- 批准号:10543058
- 负责人:
- 金额:$ 74.1万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-03-01 至 2024-12-31
- 项目状态:已结题
- 来源:
- 关键词:3 year oldAgeAge MonthsAutism DiagnosisBehaviorBehavioralBiologicalBrainBrain imagingCategoriesChildClassificationClinicalClinical assessmentsCognitiveCommunitiesComplexDataDetectionDevelopmentDevelopmental DisabilitiesDiagnosisDiagnosticDimensionsDiseaseEarly InterventionEarly identificationEpidemiologyEtiologyGoalsHeterogeneityIndividualInterventionLanguageLifeLong-Term EffectsMeasuresMethodsModelingNeurodevelopmental DisorderOutcomeParentsPatternPhenotypePopulations at RiskProceduresRecommendationReportingResearchResearch Domain CriteriaRiskSamplingScanningStratificationSubgroupSymptomsTestingToddlerTrainingValidationVariantautism spectrum disorderautistic childrenbrain basedcase-basedclinically actionablecohortcommunication behaviorconnectomedesignearly screeningfollow up assessmenthigh riskhigh risk populationimprovedinstrumentlearning algorithmneuroimagingnovelnovel strategiesoutcome predictionpopulation basedprediction algorithmpreventpublic health relevancerepetitive behaviorresiliencerisk stratificationscreeningsocial communicationsymptomatologytranslational impactunsupervised learning
项目摘要
A major impediment to early identification and intervention for autism spectrum disorder (ASD) is our limited
understanding of how different children present signs as toddlers, including what risk symptoms coincide
across multiple dimensions to predict outcome. Our objectives are to quantify behavioral and brain connectivity
based subtypes of risk that model the variability of ASD symptom expression in a community sample of
toddlers. We will then test the predictive validity of this approach in the same cohort of children at three years
of age in order to identify risk profiles that differentially predict later cognitive, behavioral, and clinical features.
First, we will implement two unsupervised data-driven computational approaches in a community sample of
3000 children between 18-24 months old in order to characterize clusters of risk profiles. We hypothesize that
each approach will identify a proportion of high-risk individuals consistent with epidemiological estimates of
ASD and associated developmental disabilities (e.g., language or global DD). Based on our preliminary data,
we anticipate that ~300 children will be identified by these data-driven risk-profiling methods. We also
hypothesize that distinct patterns of structural and functional connectivity will distinguish groups of at-risk
children and that these groups will differ from low-risk children. All children will be scanned with the same brain
imaging sequences and procedures implemented in the Baby Connectome Project and will be compared to
data from 100 low-risk children from that project. Our neuroimaging sample of 300 children will be reassessed
at age three with direct clinical assessment using gold-standard diagnostic instruments as well as parent
report. This will allow us to validate the risk profiling approach implemented at 18-24 months, to compare with
a current screening approach, and to refine the risk profiling approach with supervised training of prediction
algorithms that incorporates behavioral/clinical outcome data. We expect this method for risk
stratification/subtyping to better model the heterogeneity inherent to the early at-risk and resilient phenotypes,
which will subsequently improve early identification/diagnosis efforts. These outcomes will have translational
impact because improved methods for early identification in ASD are necessary for the successful
development of efficacious, personalized early interventions.
自闭症谱系障碍 (ASD) 早期识别和干预的一个主要障碍是我们的有限
了解不同的孩子在幼儿时期如何表现出迹象,包括哪些风险症状是一致的
跨多个维度来预测结果。我们的目标是量化行为和大脑连接
基于风险的子类型,模拟社区样本中 ASD 症状表达的变异性
幼儿。然后,我们将在三年内的同一组儿童中测试这种方法的预测有效性
年龄,以确定风险概况,以差异化预测以后的认知、行为和临床特征。
首先,我们将在社区样本中实现两种无监督数据驱动的计算方法
3000 名 18-24 个月大的儿童,以描绘风险状况的集群特征。我们假设
每种方法都将确定一定比例的高风险个体,其与流行病学估计相一致
自闭症谱系障碍 (ASD) 和相关的发育障碍(例如语言或整体发育障碍)。根据我们的初步数据,
我们预计,这些数据驱动的风险分析方法将识别出约 300 名儿童。我们也
假设结构和功能连接的不同模式将区分高危人群
儿童,并且这些群体与低风险儿童不同。所有儿童都将使用相同的大脑进行扫描
婴儿连接组项目中实施的成像序列和程序将与
来自该项目的 100 名低风险儿童的数据。我们将重新评估 300 名儿童的神经影像样本
三岁时,使用金标准诊断仪器以及家长进行直接临床评估
报告。这将使我们能够验证在 18-24 个月实施的风险分析方法,以与
当前的筛选方法,并通过预测的监督训练来完善风险分析方法
结合行为/临床结果数据的算法。我们预计这种方法的风险
分层/亚型分析,以更好地模拟早期风险和弹性表型固有的异质性,
这将随后改善早期识别/诊断工作。这些成果将产生转化
影响,因为改进自闭症谱系障碍 (ASD) 早期识别方法对于成功
制定有效的、个性化的早期干预措施。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Social Cognitive Interventions for Adolescents with Autism Spectrum Disorders: A Systematic Review.
自闭症谱系障碍青少年的社会认知干预:系统评价。
- DOI:
- 发表时间:2020
- 期刊:
- 影响因子:6.6
- 作者:Tseng, Angela;Biagianti, Bruno;Francis, Sunday M;Conelea, Christine A;Jacob, Suma
- 通讯作者:Jacob, Suma
Confronting Epistemic Injustice and Inequity in IDD Research: The Value of Theorizing Beyond Dominant Culture's Perspective.
面对 IDD 研究中的认知不公正和不平等:超越主流文化视角的理论价值。
- DOI:
- 发表时间:2023-09-01
- 期刊:
- 影响因子:0
- 作者:Bonney, Emmanuel;Elison, Jed T
- 通讯作者:Elison, Jed T
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jed Thomas Elison其他文献
Jed Thomas Elison的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jed Thomas Elison', 18)}}的其他基金
Parsing early emerging heterogeneity related to autism spectrum disorder
解析与自闭症谱系障碍相关的早期出现的异质性
- 批准号:
10321552 - 财政年份:2019
- 资助金额:
$ 74.1万 - 项目类别:
Infant Brain and Behavioral Signatures of Later Emerging Risk for Psychopathology
婴儿大脑和后来出现的精神病理学风险的行为特征
- 批准号:
9454557 - 财政年份:2014
- 资助金额:
$ 74.1万 - 项目类别:
Infant Brain and Behavioral Signatures of Later Emerging Risk for Psychopathology
婴儿大脑和后来出现的精神病理学风险的行为特征
- 批准号:
9085449 - 财政年份:2014
- 资助金额:
$ 74.1万 - 项目类别:
Infant Brain and Behavioral Signatures of Later Emerging Risk for Psychopathology
婴儿大脑和后来出现的精神病理学风险的行为特征
- 批准号:
8755214 - 财政年份:2014
- 资助金额:
$ 74.1万 - 项目类别:
相似国自然基金
年龄相关性黄斑变性治疗中双靶向药物递释策略及其机制研究
- 批准号:82301217
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
GNAS介导OPN4-PLCβ4-TRPC6/7通路调节自主感光视网膜神经节细胞在年龄相关性黄斑变性中的作用机制研究
- 批准号:82301229
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
无线供能边缘网络中基于信息年龄的能量与数据协同调度算法研究
- 批准号:62372118
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
跨尺度年龄自适应儿童头部模型构建与弥漫性轴索损伤行为及表征研究
- 批准号:52375281
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
多氯联苯与机体交互作用对生物学年龄的影响及在衰老中的作用机制
- 批准号:82373667
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
相似海外基金
Longitudinal investigation of the relations among stress, brain activity, neurocognitive skill, and socioemotional functioning during infancy
婴儿期压力、大脑活动、神经认知技能和社会情绪功能之间关系的纵向调查
- 批准号:
10898118 - 财政年份:2023
- 资助金额:
$ 74.1万 - 项目类别:
Adult epigenetics and telomere length in relation to improved nutrition in early life
成人表观遗传学和端粒长度与改善早期营养有关
- 批准号:
10562425 - 财政年份:2023
- 资助金额:
$ 74.1万 - 项目类别:
Small animal model for evaluating the impacts of cleft lip repairing scar on craniofacial growth and development
评价唇裂修复疤痕对颅面生长发育影响的小动物模型
- 批准号:
10642519 - 财政年份:2023
- 资助金额:
$ 74.1万 - 项目类别:
Early Identification Of Developmental Delay Among Infants And Toddlers With Sickle Cell Disease
早期识别患有镰状细胞病的婴儿和幼儿发育迟缓
- 批准号:
10590311 - 财政年份:2023
- 资助金额:
$ 74.1万 - 项目类别:
Mechanisms of protection against shigellosis in children
儿童志贺氏菌病的保护机制
- 批准号:
10530772 - 财政年份:2022
- 资助金额:
$ 74.1万 - 项目类别: