Fluorescence Enhanced Photothermal Infrared Spectroscopy (FE-PTIR) - breakthrough for simultaneous fluorescence microscopy and sub-micron IR spectroscopy
荧光增强光热红外光谱 (FE-PTIR) - 同步荧光显微镜和亚微米红外光谱的突破
基本信息
- 批准号:10543927
- 负责人:
- 金额:$ 86.54万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-04-02 至 2024-08-31
- 项目状态:已结题
- 来源:
- 关键词:Alzheimer&aposs DiseaseAmyloidAntimicrobial ResistanceAntimicrobial susceptibilityAreaBiochemicalBiocompatible MaterialsBiologicalBiological SciencesBiologyBiomedical EngineeringBiomedical ResearchCellsChemical StructureChemicalsClassificationComputer softwareConfocal MicroscopyDataData AnalysesDependenceDetectionDevelopmentDisease ResistanceFluorescenceFluorescence MicroscopyGlucoseGoalsHeatingImageIn SituIndividualInfrared RaysInstitutesIsotopesLabelLasersLightLipidsMalignant NeoplasmsMapsMeasurementMeasuresMetabolismMicroscopeMolecularMolecular AnalysisMolecular StructureMultimodal ImagingNeurodegenerative DisordersNeuronsOptical InstrumentPharmaceutical PreparationsPharmacotherapyPhasePhotobleachingPhysiologic pulsePlant RootsPositioning AttributeProtein AnalysisProteinsPublicationsResearchResolutionSamplingSmall Business Innovation Research GrantSourceSpecimenSpectrum AnalysisStructureTechniquesTechnologyTemperatureTestingTissuesUnited States National Institutes of HealthVisible Radiationabsorptionantimicrobialbiological researchbiomedical imagingbrain tissuecancer cellcommercializationdata acquisitiondesignengineering designfluorescence imagingfluorophoreglucose metabolismimprovedinfrared microscopyinfrared spectroscopyinnovationinsightinterestmicrobialmicroscopic imagingmultimodalitynoveloptical imagingprotein foldingprotein misfoldingprototyperesponsespectroscopic imagingsubmicrontau Proteinsvibration
项目摘要
1 This Phase II project aims to develop and commercialize Fluorescence Enhanced Photothermal Infrared (FE-PTIR) imaging
2 and spectroscopy. The proposed FE-PTIR will use fluorescence microscopy to map the distribution of fluorescently labeled
3 regions of cells and tissue and then provide chemical structural analysis of the labeled regions using photothermal infrared
4 spectroscopy. Fluorescence microscopy is a cornerstone technique in biological research, allowing sensitive mapping of
5 specifically targeted biomolecules within cells and tissue, but it does not provide information about their molecular
6 structure. Infrared (IR) spectroscopy can provide rich analysis of molecular structure and has been used in life sciences
7 research to study tissue classification, drug/tissue interaction, neurodegenerative diseases, cancer and other areas.
8 Conventional IR spectroscopy, however, has a fundamental spatial resolution limit (i.e. roughly how small an object it can
9 analyze) of around 10 micrometers, similar to the size of an average biological cell. Thus conventional IR spectroscopy has
10 been extremely limited for many biomedical applications where the structures of interest are smaller than a cell.
11 The FE-PTIR technique illuminates a fluorescently labeled sample with UV/visible light which results in fluorescent
12 emission from fluorescently tagged molecules in the sample. A tunable infrared laser source also illuminates the sample,
13 causing localized heating in the sample if the IR laser is tuned to a wavelength that excites molecular vibrations in the
14 sample. Using a camera or other sensitive photodetector is used to record the fluorescent emission from different regions
15 of the sample generates a map of the distribution of fluorescently labeled biomolecules. A key innovation of this proposal
16 was the recognition that common fluorophores have an emission efficiency that is highly temperature dependent. Thus
17 when the sample is also irradiated with infrared light at wavelengths corresponding to molecular vibrations, localized
18 heating from IR absorption by the sample causes a significant change in the fluorescent emission. Recording the emission
19 change as a function of sample position or IR wavelength produces IR absorption images and IR absorption spectra,
20 respectively. Phase I research demonstrated the following key advances: (1) ability of FE-PTIR to map of target
21 biomolecules with fluorescence and analyze the molecular structural of the target molecules; (2) achieve submicron
22 spatial resolution for both fluorescence imaging and infrared spectroscopy; (3) demonstrated a 100X improvement in
23 measurement sensitivity; (4) application of FE-PTIR to study of protein misfolding relevant to neurodegenerative disease
24 research; (5) demonstrated FE-PTIR on individual bacterial and live cancer cells with subcellular resolution. This project is
25 well aligned with NIH goals as it incorporates several key thrusts of the National Institute of Biomedical Imaging and
26 Bioengineering, including optical imaging and spectroscopy, IR imaging, confocal microscopy, and multimodal imaging. FE-
27 PTIR will be extremely useful for example in analyzing the molecular structure/folding/aggregation of fluorescence-
28 localized proteins. Protein misfolding/aggregation is a root cause of many neurodegenerative diseases (e.g. Alzheimer’s).
29 Completion of this Phase II project will lead to the commercialization of a new multimodal microscope that will offer
30 profound benefits for biomedical research including neurodegenerative diseases and antimicrobial resistance research.
1 该二期项目旨在开发荧光增强光热红外(FE-PTIR)成像并将其商业化
2 和光谱学。拟议的 FE-PTIR 将使用荧光显微镜来绘制荧光标记的分布图。
3 个细胞和组织区域,然后使用光热红外对标记区域进行化学结构分析
4 荧光显微镜是生物研究的基石技术,可以进行灵敏的绘图。
5 种专门针对细胞和组织内的生物分子,但它没有提供有关其分子的信息
6. 结构红外(IR)光谱可以提供丰富的分子结构分析,并已应用于生命科学领域。
7 研究组织分类、药物/组织相互作用、神经退行性疾病、癌症等领域。
8 然而,传统的红外光谱有一个基本的空间分辨率限制(即它可以测量的物体大约有多小)
9 分析)约为 10 微米,类似于普通生物细胞的大小,因此传统的红外光谱法具有约 10 微米的尺寸。
10 对于许多感兴趣的结构小于细胞的生物医学应用来说非常有限。
11 FE-PTIR 技术用紫外/可见光照射荧光标记的样品,从而产生荧光
12 样品中荧光标记分子的发射也可照亮样品,
13 如果红外激光调谐到激发样品中分子振动的波长,则会导致样品局部加热。
14个样品使用相机或其他灵敏的光电探测器来记录来自不同区域的荧光发射。
15 个样本生成荧光标记生物分子的分布图,这是该提案的一个关键创新。
16 是认识到常见荧光团的发射效率高度依赖于温度。
17 当样品也用与分子振动相对应的波长的红外光照射时,局部
18 样品吸收红外光产生的热量导致荧光发射发生显着变化 记录发射。
19 作为样品位置或IR波长的函数的变化产生IR吸收图像和IR吸收光谱,
20 第一阶段研究展示了以下关键进展:(1) FE-PTIR 绘制目标图的能力。
21个生物分子具有荧光并分析目标分子的分子结构(2)实现亚微米级;
22 荧光成像和红外光谱的空间分辨率提高了 100 倍;
23测量灵敏度;(4)FE-PTIR在神经退行性疾病相关蛋白质错误折叠研究中的应用
24 研究;(5) 展示了对单个细菌和活癌细胞的亚细胞分辨率的 FE-PTIR。
25 与 NIH 的目标非常一致,因为它融合了国家生物医学成像研究所的几个关键目标和
26 生物工程,包括光学成像和光谱、红外成像、共焦显微镜和多模态成像。
27 PTIR 在分析荧光分子结构/折叠/聚集等方面非常有用。
28 种局部蛋白质。蛋白质错误折叠/聚集是许多神经退行性疾病(例如阿尔茨海默病)的根本原因。
29 该二期项目的完成将导致新型多模态显微镜的商业化,该显微镜将提供
为生物医学研究带来 30 种深远的好处,包括神经退行性疾病和抗菌素耐药性研究。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Craig Prater其他文献
Craig Prater的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Craig Prater', 18)}}的其他基金
Fluorescence Enhanced Photothermal Infrared Spectroscopy (FE-PTIR) - breakthrough for simultaneous fluorescence microscopy and sub-micron IR spectroscopy
荧光增强光热红外光谱 (FE-PTIR) - 同步荧光显微镜和亚微米红外光谱的突破
- 批准号:
10693270 - 财政年份:2021
- 资助金额:
$ 86.54万 - 项目类别:
Fluorescence Enhanced Photothermal Infrared Spectroscopy (FE-PTIR)-breakthrough for simultaneous fluorescence microscopy and sub-micron IR spectroscopy
荧光增强光热红外光谱 (FE-PTIR)——同步荧光显微镜和亚微米红外光谱的突破
- 批准号:
10253663 - 财政年份:2021
- 资助金额:
$ 86.54万 - 项目类别:
IRaman: Breakthrough biomedical microscope with simultaneous infrared and Raman spectroscopy at sub-micron spatial resolution
IRaman:具有亚微米空间分辨率同时红外和拉曼光谱的突破性生物医学显微镜
- 批准号:
10006670 - 财政年份:2018
- 资助金额:
$ 86.54万 - 项目类别:
相似国自然基金
靶向干预CD33/Aβ相互作用改善小胶质细胞功能延缓AD病理进程
- 批准号:81901072
- 批准年份:2019
- 资助金额:20.5 万元
- 项目类别:青年科学基金项目
Pcdh-γC5介导的神经突触异常参与AD疾病发生的分子机制研究
- 批准号:81870845
- 批准年份:2018
- 资助金额:56.0 万元
- 项目类别:面上项目
阿尔茨海默病疾病进程中Aβ种子的作用变化及机制研究
- 批准号:81701059
- 批准年份:2017
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
基于自发性糖尿病老年食蟹猴阿尔茨海默病模型的建立和评估
- 批准号:31472056
- 批准年份:2014
- 资助金额:88.0 万元
- 项目类别:面上项目
EndophilinB1对APP及A-beta的调控作用在阿尔茨海默病中的机制性研究
- 批准号:81171017
- 批准年份:2011
- 资助金额:55.0 万元
- 项目类别:面上项目
相似海外基金
Project 3: 3-D Molecular Atlas of cerebral amyloid angiopathy in the aging brain with and without co-pathology
项目 3:有或没有共同病理的衰老大脑中脑淀粉样血管病的 3-D 分子图谱
- 批准号:
10555899 - 财政年份:2023
- 资助金额:
$ 86.54万 - 项目类别:
Project 2: Biomarker Analysis, Non-Genetic Risk Factors, and Their Genetic Interactions
项目 2:生物标志物分析、非遗传风险因素及其遗传相互作用
- 批准号:
10555697 - 财政年份:2023
- 资助金额:
$ 86.54万 - 项目类别: