Cerebral Palsy Risk Identification System
脑瘫风险识别系统
基本信息
- 批准号:10545159
- 负责人:
- 金额:$ 24.31万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-20 至 2024-08-31
- 项目状态:已结题
- 来源:
- 关键词:3-DimensionalAdoptionAdvisory CommitteesBenchmarkingBiometryBirthCephalicCerebral PalsyCertificationChildChildhoodClassificationClinicalClinical assessmentsComplexComputer softwareConsensusDataData SetDatabasesDevelopmentDevice or Instrument DevelopmentDevicesDistalElectronic Health RecordElementsEnsureEnvironmentGestational AgeGoalsHealth PersonnelHuman ResourcesInfantInterventionLiteratureMagnetic Resonance ImagingManualsMethodsMotorMovementMulticenter StudiesMuscle CrampNeonatologyOutcomeOutpatientsPatternPediatricsPerformancePhasePhenotypePositioning AttributePremature BirthPremature InfantProcessProgress ReportsReportingRiskRisk AssessmentRisk FactorsSample SizeSamplingScoring MethodSensitivity and SpecificitySiteStandardizationStrokeSystemTechnologyTestingTimeTrainingUnited StatesVideo RecordingVisualWeightbaseclinical applicationclinical centercomputerizedcomputerized data processingconvolutional neural networkcostdata qualitydesigndisabilityexperiencefield studyhigh riskinclusion criteriakinematicsmachine learning classifiermeetingsneural network classifiernext generationnovel strategiesoperationphysically handicappedsoftware systemsstem cellssuccessultrasoundwireless
项目摘要
PROJECT SUMMARY
Neonatologists are often required to identify infants who are likely to suffer poor neurodevelopmental
outcomes, including Cerebral Palsy (CP). CP is the most common motor disability among children in the United States
and is associated with risk factors including low weight for gestational age, premature birth, and stroke. Although MRI
and cranial ultrasound provide valuable structural information in the preterm period, they have moderate predictive
accuracy for early CP risk identification. Over the past 20 years, numerous studies have validated the clinical potential
of General Movement Assessment (GMA) for early CP risk identification and there is consensus in the literature that
GMA offers the highest accuracy. Stage 1 “cramped synchronized” general movements (CSGMs) spanning 34-48
weeks gestational age (GA) during the “writhing movements” period and Stage 2 “forced, voluntary movements”
spanning 50-59 weeks GA have demonstrated high sensitivity and specificity for developing CP, conjointly ranging
from 80%-98% when performed by extensively trained experts.
Despite its potential, GMA is available in very few clinical centers, as adoption and routine application depend
on the availability of highly trained GMA raters to perform lengthy and costly bedside observations or video review-
based scoring and manual report creation. A Cerebral Palsy Risk Identification System (CPRIS) is proposed that will
be the first to automate GMA for routine application. The CPRIS constitutes a next-generation approach that will
fundamentally transform GMA by replacing rater visual gestalts with objective, systematic, validated movement pattern
classification. Further, the CPRIS potentially offers a means of informing, and assessing the efficacy of emerging stem
cell-based interventions for CP along the early developmental continuum.
Successful implementation of Phase I&II will complete a small form factor, mobile, highly automated
preproduction system for cerebral palsy risk identification that can be readily applied by staff, clinicians, and health
care provider personnel without any form of manual post-processing operations or video file transfer. An integrated
utility will support GMA creation and report sharing with Electronic Health Record (EHR) systems. An application-
specific, fully integrated device will achieve the highest degree of standardization and thus data quality.
In a field study at two prominent Level 3 NICUs, infant movements will be acquired using an “RGB-D”, or 3D
“depth” camera in conjunction with an application- and stage-specific “Depth-Flow” convolutional neural network
(CNN) classifier approach, that requires no infant contact (contrasting with kinematic methods) and captures whole-
body movements. This effort marks the first utilization of such technology to automate GMA. Results will be compared
to consensus determinations of advanced GMA raters in a sample of high risk preterm infants at both Stages 1 & 2.
Viability of the new approach will be determined by ROC-AUC analyses, with a threshold for success of ≥ 0.90
accuracy. Overall results will be evaluated by an Advisory Committee of recognized experts in the fields of
neonatology, pediatrics, cerebral palsy, GMA and biostatistics.
项目概要
新生儿科医生经常需要识别可能患有神经发育不良的婴儿
脑瘫 (CP) 是美国儿童中最常见的运动障碍。
与危险因素相关,包括低胎龄体重、早产和中风。
和颅脑超声在早产期提供有价值的结构信息,它们具有中等预测性
早期 CP 风险识别的准确性 在过去 20 年中,大量研究已经验证了其临床潜力。
全身运动评估(GMA)用于早期脑瘫风险识别,文献中达成共识:
GMA 提供最高精度的第 1 阶段“狭窄同步”一般运动 (CSGM),范围为 34-48。
“书写运动”阶段和第二阶段“强迫、自愿运动”期间的孕周 (GA)
跨越 50-59 周的 GA 已表现出对发展 CP 的高敏感性和特异性,同时范围
当由经过主要培训的专家执行时,效率为 80%-98%。
尽管 GMA 具有潜力,但只有极少数临床中心可以使用,因为采用和常规应用取决于
是否有训练有素的 GMA 评估员来进行冗长且昂贵的床边观察或视频审查 -
提出了基于评分和手动报告创建的脑瘫风险识别系统(CPRIS)。
CPRIS 是第一个将 GMA 自动化用于常规应用的下一代方法。
通过用客观、系统、经过验证的运动模式取代评估者的视觉格式塔,从根本上改变 GMA
此外,CPRIS 可能提供一种告知和评估新兴干细胞功效的方法。
沿着早期发育连续体对 CP 进行基于细胞的干预。
第一阶段和第二阶段的成功实施将完成小型化、移动化、高度自动化
用于脑瘫风险识别的预生产系统,工作人员、牧师和健康人员可以轻松应用
护理人员无需进行任何形式的手动后处理操作或视频文件传输。
实用程序将支持 GMA 创建和与电子健康记录 (EHR) 系统的报告共享。
特定的、完全集成的设备将实现最高程度的标准化,从而实现最高的数据质量。
在两个著名的 3 级新生儿重症监护病房 (NICU) 进行的现场研究中,将使用“RGB-D”(即 3D)获取婴儿运动
“深度”相机与特定于应用和阶段的“深度流”卷积神经网络相结合
(CNN)分类器方法,不需要婴儿接触(与运动学方法相比)并捕获整体
这项工作标志着首次利用此类技术对 GMA 结果进行自动化比较。
高级 GMA 评估者对第 1 和第 2 阶段高风险早产儿样本的一致决定。
新方法的可行性将通过 ROC-AUC 分析确定,成功阈值≥ 0.90
总体结果将由各领域公认专家组成的咨询委员会进行评估。
新生儿学、儿科、脑瘫、GMA 和生物统计学。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
JAMES P O'HALLORAN其他文献
JAMES P O'HALLORAN的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('JAMES P O'HALLORAN', 18)}}的其他基金
Computerized Assessment by Remote Examiner System (CARES)
远程检查系统计算机化评估(CARES)
- 批准号:
8141230 - 财政年份:2009
- 资助金额:
$ 24.31万 - 项目类别:
Computerized Assessment by Remote Examiner System (CARES)
远程检查系统计算机化评估(CARES)
- 批准号:
7913133 - 财政年份:2009
- 资助金额:
$ 24.31万 - 项目类别:
Computerized Assessment by Remote Examiner System (CARES)
远程检查系统计算机化评估(CARES)
- 批准号:
7613525 - 财政年份:2009
- 资助金额:
$ 24.31万 - 项目类别:
Illness Management and Recovery Program: IMR-Web
疾病管理和康复计划:IMR-Web
- 批准号:
7677772 - 财政年份:2009
- 资助金额:
$ 24.31万 - 项目类别:
相似国自然基金
山丘区农户生计分化对水保措施采用的影响及其调控对策
- 批准号:42377321
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
采用新型视觉-电刺激配对范式长期、特异性改变成年期动物视觉系统功能可塑性
- 批准号:32371047
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
金融科技驱动的供应链库存与融资策略和技术采用合作机制研究
- 批准号:72371117
- 批准年份:2023
- 资助金额:39 万元
- 项目类别:面上项目
政策激励、信息传递与农户屋顶光伏技术采用提升机制研究
- 批准号:72304103
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
金属有机骨架材料在环境VOCs处理过程中采用原位电子顺磁共振自旋探针检测方法的研究
- 批准号:22376147
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
Remote Tai Chi for Knee Osteoarthritis: an Embedded Pragmatic Trial
远程太极拳治疗膝骨关节炎:嵌入式实用试验
- 批准号:
10649920 - 财政年份:2023
- 资助金额:
$ 24.31万 - 项目类别:
Implementing SafeCare Kenya to Reduce Noncommunicable Disease Burden: Building Community Health Workers' Capacity to Support Parents with Young Children
实施 SafeCare Kenya 以减少非传染性疾病负担:建设社区卫生工作者支持有幼儿的父母的能力
- 批准号:
10672785 - 财政年份:2023
- 资助金额:
$ 24.31万 - 项目类别:
Defining PRC1.1 as a gatekeeper of lineage plasticity and response to anti-GD2 therapy
将 PRC1.1 定义为谱系可塑性和抗 GD2 治疗反应的看门人
- 批准号:
10644278 - 财政年份:2023
- 资助金额:
$ 24.31万 - 项目类别:
SUPPORTING WHO ONCHOCERCIASIS ELIMINATION PROGRAMS: PROGRESSING A HIGHLY SENSITIVE AND ULTRA-SPECIFIC RAPID DIAGNOSTIC TEST TO COMMERCIALIZATION READINESS
支持世界卫生组织根除盘尾丝虫病计划:推进高度敏感和超特异性的快速诊断测试以做好商业化准备
- 批准号:
10697164 - 财政年份:2023
- 资助金额:
$ 24.31万 - 项目类别: