MRI Radiomic Signatures of DCIS to Optimize Treatment
DCIS 的 MRI 放射学特征可优化治疗
基本信息
- 批准号:10537149
- 负责人:
- 金额:$ 59.75万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-07-01 至 2027-06-30
- 项目状态:未结题
- 来源:
- 关键词:AddressAffectAftercareAmerican College of Radiology Imaging NetworkAnxietyBiologicalBiological AssayBiologyBreastBreast Cancer DetectionBreast Magnetic Resonance ImagingClinicalClinical DataClinical MarkersCollaborationsDataDatabasesDetectionDevelopmentDiagnosisDiseaseEastern Cooperative Oncology GroupGene ExpressionGenomicsGoldHeterogeneityHistopathologyImageIn Situ LesionIncidenceIndividualInstitutionInterobserver VariabilityIpsilateralLinkLocal TherapyMRI ScansMachine LearningMagnetic Resonance ImagingMalignant NeoplasmsMammographic screeningMammographyMeasuresMedicalModelingMolecularMolecular ProfilingMorbidity - disease rateNewly DiagnosedNoiseNoninfiltrating Intraductal CarcinomaNormal tissue morphologyOncologyOperative Surgical ProceduresOutcomePathologicPathologyPatientsPenetrationPennsylvaniaPerformancePhenotypePhysiciansPlant RootsPrognosisPrognostic FactorPublic HealthRadiation therapyRadiosurgeryRecurrenceReproducibilityRiskRisk AssessmentSamplingScienceSemanticsSignal TransductionStagingStandardizationStatistical Data InterpretationSurvival RateSystemic TherapyTestingThickTissue SampleTissuesUniversitiesUnnecessary SurgeryWashingtonWomanWorkaggressive therapyangiogenesisbasebreast cancer diagnosisbreast imagingcalcificationcancer invasivenessclinical databaseclinical prognosticcohortcombatexperiencehealth goalshigh riskhormone therapyimaging biomarkerimprovedindexinginter-institutionalmalignant breast neoplasmmolecular markermultidimensional datanon-invasive imagingnovelnovel strategiesoncotypeopen sourceovertreatmentphenomicsphenotypic dataprognosticprognostic indexprognostic modelradiomicsrisk prediction modelrisk stratificationside effectsoftware developmentstandard of carestatistical centertooltreatment optimizationtumoruser-friendly
项目摘要
Abstract/Project Summary: The purpose of this study is to determine whether breast MRI radiomic features
can be utilized to optimize treatment of ductal carcinoma in situ (DCIS), the earliest form of breast cancer
diagnosed. Although DCIS survival rates approach 100%, there is concern that its management generally
results in overtreatment, exposing many of the 50,000 U.S. women diagnosed each year to unnecessary
anxiety and morbidity. The vast majority of DCIS is detected in asymptomatic women in whom suspicious
calcifications are identified on mammography and characterized using limited tissue histopathology.
Unfortunately, conventional imaging and pathology have not proven reliable for distinguishing low vs. high-risk
DCIS. Specifically, it is unclear at diagnosis which forms of DCIS will upstage to invasive disease or have an
ipsilateral breast recurrence (IBR) after treatment. This limited risk-stratification is due in part to inadequate
sampling of the entire DCIS lesion and an inability to account for peritumoral microenvironment features. This
results in unnecessary surgery, radiation therapy, and medical therapy for as many as half of women
diagnosed with DCIS. Breast MRI is commonly and easily performed, able to best depict DCIS span, and can
assess tumor and peritumoral heterogeneity rooted in biological features such as angiogenesis, making it an
appealing choice for a radiomics assay to improve DCIS risk assessments. The Quantitative Breast Imaging
Lab at the University of Washington has shown that quantitative MRI features are associated with DCIS grade,
a molecular marker of recurrence (Oncotype DX DCIS Score), and IBR. The Computational Biomarker Imaging
Group at the University of Pennsylvania has pioneered breast MRI radiomic phenotyping and shown radiomic
measures of breast cancers correlate with genomic features and recurrence. The Center for Statistical
Sciences at Brown University has expertise with radiomics, machine learning, and statistical analyses for
imaging trials from ECOG-ACRIN. In this collaborative application, we hypothesize that breast MRI radiomic
signatures of DCIS will result in distinct phenotypes that are prognostic and can be integrated with
clinical, molecular, and pathologic markers to optimize DCIS treatment. To test this hypothesis, we will
create a multi-institutional database of over 1400 MRIs, including exams from the ECOG-ACRIN E4112 trial,
with curated outcomes (e.g., upstage to invasion, DCIS Score, and IBR). Leveraging a novel approach to
harmonize multicenter data (nested-Combat radiomic feature standardization), we will discover and validate
MRI radiomic phenotypes and assess those phenotypes’ associations with invasive upstaging, Oncotype DX
DCIS Score, and 5- and 10-year IBR. Finally, we will determine whether integration of these phenotypes into
existing clinical prognostic indices (e.g., Van Nuys Prognostic Index) can provide more precise estimates of
IBR. If successful, this study will help clinicians de-escalate DCIS therapy in low-risk patients and address an
important public health goal: decreasing breast cancer overtreatment.
摘要/项目摘要:本研究的目的是确定乳腺 MRI 放射学特征是否
可用于优化导管原位癌 (DCIS)(乳腺癌的最早形式)的治疗
尽管 DCIS 的存活率接近 100%,但其管理仍令人担忧。
导致过度治疗,每年诊断出 50,000 名美国女性,其中许多女性面临不必要的治疗
绝大多数导管原位癌是在无症状且可疑的女性中发现的。
通过乳房X线照相术识别钙化,并使用有限的组织病理学对其进行表征。
不幸的是,传统的影像学和病理学尚未证明能够可靠地区分低风险与高风险
具体而言,在诊断时尚不清楚哪些形式的 DCIS 会发展为侵袭性疾病或发生浸润性疾病。
治疗后同侧乳房复发(IBR)的风险分层有限,部分原因是不充分。
对整个 DCIS 病变进行采样,并且无法考虑瘤周微环境特征。
导致多达一半的女性接受不必要的手术、放射治疗和药物治疗
诊断为 DCIS 时,乳房 MRI 是常见且容易执行的,能够最好地描述 DCIS 跨度,并且可以
评估源于血管生成等生物学特征的肿瘤和瘤周异质性,使其成为
放射组学检测是改善 DCIS 风险评估的一个有吸引力的选择。
华盛顿大学的实验室表明,定量 MRI 特征与 DCIS 等级相关,
复发的分子标记(Oncotype DX DCIS 评分)和 IBR 计算生物标记成像。
宾夕法尼亚大学的研究小组开创了乳腺 MRI 放射组学表型分析的先河,并展示了放射组学
乳腺癌的测量与基因组特征和复发相关。
布朗大学的科学专业拥有放射组学、机器学习和统计分析方面的专业知识
ECOG-ACRIN 的成像试验 在本次合作应用中,我们采用了乳腺 MRI 放射组学。
DCIS 的特征将导致不同的表型,这些表型具有预后意义,并且可以与
为了验证这一假设,我们将采用临床、分子和病理标志物来优化 DCIS 治疗。
创建包含 1400 多个 MRI 的多机构数据库,包括 ECOG-ACRIN E4112 试验的检查,
具有策划的结果(例如,入侵的后期、DCIS 评分和 IBR)。
协调多中心数据(嵌套战斗放射组学特征标准化),我们将发现并验证
MRI 放射组学表型并评估这些表型与侵入性上期的关联,Oncotype DX
DCIS 评分以及 5 年和 10 年 IBR 最后,我们将确定是否将这些表型整合到其中。
现有的临床预后指数(例如范奈斯预后指数)可以提供更精确的估计
如果成功,这项研究将有助于降低低风险患者的 DCIS 治疗并解决一个问题
重要的公共卫生目标:减少乳腺癌过度治疗。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Despina Kontos其他文献
Despina Kontos的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Despina Kontos', 18)}}的其他基金
MRI Radiomic Signatures of DCIS to Optimize Treatment
DCIS 的 MRI 放射学特征可优化治疗
- 批准号:
10655641 - 财政年份:2022
- 资助金额:
$ 59.75万 - 项目类别:
Multi-parametric 4-D Imaging Biomarkers for Neoadjuvant Treatment Response
新辅助治疗反应的多参数 4-D 成像生物标志物
- 批准号:
9895669 - 财政年份:2016
- 资助金额:
$ 59.75万 - 项目类别:
Multi-parametric 4-D Imaging Biomarkers for Neoadjuvant Treatment Response
新辅助治疗反应的多参数 4-D 成像生物标志物
- 批准号:
9106459 - 财政年份:2016
- 资助金额:
$ 59.75万 - 项目类别:
Breast tomosynthesis texture-based segmentation for volumetric density estimation
用于体积密度估计的基于乳房断层合成纹理的分割
- 批准号:
8248953 - 财政年份:2012
- 资助金额:
$ 59.75万 - 项目类别:
Effect of Breast Density on Screening Recall with Digital Breast Tomosynthesis
乳房密度对数字乳房断层合成筛查回忆的影响
- 批准号:
8643193 - 财政年份:2012
- 资助金额:
$ 59.75万 - 项目类别:
Effect of Breast Density on Screening Recall with Digital Breast Tomosynthesis
乳房密度对数字乳房断层合成筛查回忆的影响
- 批准号:
8831453 - 财政年份:2012
- 资助金额:
$ 59.75万 - 项目类别:
Effect of Breast Density on Screening Recall with Digital Breast Tomosynthesis
乳房密度对数字乳房断层合成筛查回忆的影响
- 批准号:
8303845 - 财政年份:2012
- 资助金额:
$ 59.75万 - 项目类别:
Digital breast tomosynthesis imaging biomarkers for breast cancer risk estimation
用于乳腺癌风险评估的数字乳腺断层合成成像生物标志物
- 批准号:
9899935 - 财政年份:2012
- 资助金额:
$ 59.75万 - 项目类别:
Breast tomosynthesis texture-based segmentation for volumetric density estimation
用于体积密度估计的基于乳房断层合成纹理的分割
- 批准号:
8442279 - 财政年份:2012
- 资助金额:
$ 59.75万 - 项目类别:
Effect of Breast Density on Screening Recall with Digital Breast Tomosynthesis
乳房密度对数字乳房断层合成筛查回忆的影响
- 批准号:
8465846 - 财政年份:2012
- 资助金额:
$ 59.75万 - 项目类别:
相似国自然基金
社会网络关系对公司现金持有决策影响——基于共御风险的作用机制研究
- 批准号:72302067
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
高尿酸调控TXNIP驱动糖代谢重编程影响巨噬细胞功能
- 批准号:82370895
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
倒装芯片超声键合微界面结构演变机理与影响规律
- 批准号:52305599
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
寒地城市学区建成环境对学龄儿童心理健康的影响机制与规划干预路径研究
- 批准号:52378051
- 批准年份:2023
- 资助金额:52 万元
- 项目类别:面上项目
原位研究聚变燃料纯化用Pd-Ag合金中Ag对辐照缺陷演化行为的影响及其相互作用机制
- 批准号:12305308
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Novel Implementation of Microporous Annealed Particle HydroGel for Next-generation Posterior Pharyngeal Wall Augmentation
用于下一代咽后壁增强的微孔退火颗粒水凝胶的新实现
- 批准号:
10727361 - 财政年份:2023
- 资助金额:
$ 59.75万 - 项目类别:
Adapting Online Obesity Treatment for Primary Care Patients in Poverty
为贫困初级保健患者采用在线肥胖治疗
- 批准号:
10722366 - 财政年份:2023
- 资助金额:
$ 59.75万 - 项目类别:
Incidence and Time on Onset of Cardiovascular Risk Factors and Cardiovascular Disease in Adult Survivors of Adolescent and Young Adult Cancer and Association with Exercise
青少年和青年癌症成年幸存者心血管危险因素和心血管疾病的发病率和时间以及与运动的关系
- 批准号:
10678157 - 财政年份:2023
- 资助金额:
$ 59.75万 - 项目类别:
Using in-vivo Real-time Biosensor to Evaluate Prodrugs Designed to Prolong Therapeutic Effects for Smoking Cessation.
使用体内实时生物传感器评估旨在延长戒烟治疗效果的前药。
- 批准号:
10546293 - 财政年份:2023
- 资助金额:
$ 59.75万 - 项目类别: