Mechanisms of Somatostatin-Mediated Inhibition of Insulin and Glucagon
生长抑素介导的胰岛素和胰高血糖素抑制机制
基本信息
- 批准号:10537377
- 负责人:
- 金额:$ 3.92万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-07-01 至 2025-06-30
- 项目状态:未结题
- 来源:
- 关键词:ActinsAddressAdenosine MonophosphateAffectAgonistAlpha CellAmericanAmericasAttenuatedAutomobile DrivingBeta CellCalciumCell surfaceCellsCiliaComplementComplexCoupledCyclic AMPD CellsDataDiabetes MellitusEndocrine System DiseasesExocytosisF-ActinFamilyFunctional ImagingGTP-Binding ProteinsGenetic TranscriptionGlucagonGlucoseGuanosine Triphosphate PhosphohydrolasesHormone secretionHormonesHypoglycemiaImageIndividualInsulinInsulin-Dependent Diabetes MellitusIslet CellIslets of LangerhansKineticsKnowledgeLeadMechanicsMediatingMetabolicMissionMolecularMonomeric GTP-Binding ProteinsMusNational Institute of Diabetes and Digestive and Kidney DiseasesNon-Insulin-Dependent Diabetes MellitusOutcomeParacrine CommunicationPeriodicityPharmacologyPopulationPublic HealthQuality of lifeReceptor ActivationReporterResearchResolutionRoleSSTR2 geneSSTR3 geneSecretory VesiclesSignal TransductionSomatostatinSomatostatin ReceptorSpecificityStructure of beta Cell of isletTestingTimeTissuesTransgenic MiceUnited StatesWeightantagonistattenuationbasecell typeexperimental studyimaging approachimprovedinnovationinsulin secretionisletlive cell imagingnext generation sequencingnovelpeptide hormonepolymerizationreceptorresponserhoselective expressionsensorsomatostatin receptor 1spatiotemporaltargeted treatmenttranscriptometranscriptomicstype I and type II diabetes
项目摘要
Somatostatin (SST) is a major inhibitory hormone that is capable of attenuating both glucagon and insulin
secretion from alpha (α) and beta (β) cells respectively within the pancreatic islet of Langerhans. However, there
is a critical gap in our understanding of the basic signaling mechanisms downstream of Somatostatin Receptor
(SSTR) activation, and how these favor the inhibition of insulin secretion under some circumstances and the
inhibition of glucagon secretion under others. Through transcriptomic analysis of purified α and β cell populations
I have identified key differences and potential similarities between both which may begin to explain their cell
specific SST response. Central to these observations, the SSTR profile which provides the input signal between
either cell type is fundamentally different between α and β cells, with both cell types expressing SSTR3 on
primary cilia, while α cells additionally express SSTR2 on their cell surface. Somatostatin signaling is typically
suggested to lead to the inhibition of calcium and/or cAMP in the islet, but the relative importance of SST’s effect
on these parallel signaling cascades is not understood. Furthermore, I have identified a novel SSTR mediated
effector mechanism that actively drives the remodeling of filamentous actin (F-actin) with implications for
secretory granule exocytosis. As such, my central hypothesis is that selective activation of SSTR3 on β cells
and SSTR2 or SSTR3 on α cells will attenuate insulin and glucagon secretion via distinct effects on the quality
and kinetics of Ca2+ and cAMP responses and downstream F-actin polymerization. I will pursue this hypothesis
through two separate aims anchored by high throughput functional imaging of intact islets. First, I will leverage
transgenic mouse lines in which fluorescent reporters of secondary messengers will be delivered to strictly α or
β cells. These islets will then be subjected to individual SSTR agonists and antagonists to understand the
individual contributions of identified cell specific SSTRs. Second, fluorescent reporters of F-actin dynamics will
be employed in live imaging experiments to functionally determine the contribution of SSTR activation on F-actin
polymerization and remodeling. These results will be coupled next generation sequencing data of purified
populations of α and β cells treated with SST and SSTR type specific antagonists. The results of this aim will
characterize an underlying F-actin response to SST contributing to overall hormone attenuation. These
approaches are innovative as they leverage the power of high throughput functional imaging of large populations
of cells to characterize both a novel mechanism and cell type specific response in high resolution. Collectively,
the results of these aims are significant as they will result in a more complete understanding of the mechanisms
by which SST succeeds in attenuating insulin and glucagon release under different metabolic conditions. This
understanding carries significant weight in developing cell specific SSTR agonists aimed at attenuating specific
cell populations, with implications in targeted treatment of type I and II diabetes affecting over 30 million
individuals in the United States of America.
生长抑素 (SST) 是一种主要的抑制激素,能够减弱胰高血糖素和胰岛素的作用
然而,朗格汉斯胰岛内的α(α)和β(β)细胞分别分泌。
是我们对生长抑素受体下游基本信号机制理解的一个关键差距
(SSTR)激活,以及这些在某些情况下如何有利于抑制胰岛素分泌以及
通过对纯化的 α 和 β 细胞群进行转录组分析,抑制其他条件下的胰高血糖素分泌。
我已经确定了两者之间的关键差异和潜在相似之处,这可能开始解释它们的细胞
特定的 SST 响应是这些观测的核心,SSTR 曲线提供了之间的输入信号。
α 细胞和 β 细胞之间的任何一种细胞类型都有根本的不同,这两种细胞类型都表达 SSTR3
初级纤毛,而 α 细胞通常在其细胞表面表达 SSTR2。
建议导致胰岛中钙和/或 cAMP 的抑制,但 SST 作用的相对重要性
此外,我还发现了一种新的 SSTR 介导的信号通路。
主动驱动丝状肌动蛋白(F-肌动蛋白)重塑的效应机制,对
因此,我的中心假设是 SSTR3 对 β 细胞的选择性激活。
α 细胞上的 SSTR2 或 SSTR3 将通过对质量的不同影响来减弱胰岛素和胰高血糖素的分泌
以及 Ca2+ 和 cAMP 反应以及下游 F-肌动蛋白聚合的动力学 我将继续研究这一假设。
首先,我将利用完整胰岛的高通量功能成像来实现两个不同的目标。
转基因小鼠品系,其中第二信使的荧光产生者将被严格传递到α或
然后将这些胰岛置于单独的 SSTR 激动剂和拮抗剂中以了解其作用。
其次,F-肌动蛋白动态的荧光产生者将被确定的细胞特异性 SSTR 的个体贡献。
用于实时成像实验,从功能上确定 SSTR 激活对 F-肌动蛋白的贡献
这些结果将与纯化的下一代测序数据相结合。
用 SST 和 SSTR 类型特异性拮抗剂处理的 α 和 β 细胞群,该目标的结果将。
描述了 F-肌动蛋白对 SST 的潜在反应,导致整体激素减弱。
这些方法具有创新性,因为它们利用了大量人群的高通量功能成像的力量
细胞以高分辨率共同表征新机制和细胞类型特异性反应。
这些目标的结果意义重大,因为它们将使人们更全面地了解这些机制
SST 成功地减少了不同代谢条件下胰岛素和胰高血糖素的释放。
了解对于开发旨在减弱特定细胞特异性 SSTR 激动剂的重要性
细胞群,对影响超过 3000 万人的 I 型和 II 型糖尿病的靶向治疗具有影响
美利坚合众国的个人。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ryan Hart其他文献
Ryan Hart的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ryan Hart', 18)}}的其他基金
Mechanisms of Somatostatin-Mediated Inhibition of Insulin and Glucagon
生长抑素介导的胰岛素和胰高血糖素抑制机制
- 批准号:
10642738 - 财政年份:2022
- 资助金额:
$ 3.92万 - 项目类别:
相似国自然基金
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
相似海外基金
Elucidating the Host Metabolic Response to Consumption of Kombucha-associated Microorganisms
阐明宿主对康普茶相关微生物消耗的代谢反应
- 批准号:
10678132 - 财政年份:2023
- 资助金额:
$ 3.92万 - 项目类别:
Probing the role of adenosine pathway in SIV pathogenesis
探讨腺苷途径在 SIV 发病机制中的作用
- 批准号:
10760676 - 财政年份:2023
- 资助金额:
$ 3.92万 - 项目类别:
The Role of Adenosine Kinase in Mixed Diastolic Heart Failure and Alzheimer Disease
腺苷激酶在混合性舒张性心力衰竭和阿尔茨海默病中的作用
- 批准号:
10679989 - 财政年份:2023
- 资助金额:
$ 3.92万 - 项目类别:
Localized mitochondrial metabolic activity in Xenopus mesendoderm cells undergoing collective cell migration
爪蟾中内胚层细胞集体细胞迁移的局部线粒体代谢活性
- 批准号:
10751722 - 财政年份:2023
- 资助金额:
$ 3.92万 - 项目类别:
Axin Stabilization by Novel Small Molecules to Treat Non-alcoholic Steatohepatitis
新型小分子稳定轴蛋白治疗非酒精性脂肪性肝炎
- 批准号:
10659312 - 财政年份:2023
- 资助金额:
$ 3.92万 - 项目类别: