Multiplexed neurochemical methods to understand adenosine neuromodulation
多重神经化学方法了解腺苷神经调节
基本信息
- 批准号:10538604
- 负责人:
- 金额:$ 60.17万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-01-01 至 2026-12-31
- 项目状态:未结题
- 来源:
- 关键词:AcetylcholineAdenosineBiologicalBrainCalciumCalcium SignalingCellsColorDetectionDevelopmentDiffusionDiseaseDisease modelDopamineElectrodesEventFiberFutureGeneticGlutamatesGoalsIschemiaKnowledgeMeasurementMeasuresMediatingMethodsMicroelectrodesMonitorMusNatureNeuromodulatorNeuronsNeurotransmittersParkinson DiseasePeriodicityPhasePhotometryPlayReaction TimeRegulationResearchResearch PersonnelResolutionRoleScanningSignal TransductionSliceStrokeTechniquesTechnologyTestingTherapeuticTherapeutic UsesTimeTraumatic Brain InjuryUniversitiesVirginiaWorkanalytical toolcarbon fiberdesignin vivoinsightmodel organismneurochemistryneuroprotectionneuroregulationneurotransmissionnew technologyreal time monitoringreceptorsensortherapy developmenttool
项目摘要
PROJECT SUMMARY
What is the role of adenosine as a rapid modulator of neurotransmission and how can we harness its power for
potential therapeutic use? To answer questions such as these, we need analytical tools that can measure
multiple neurochemicals simultaneously with high temporal and spatial resolution. Our lab pioneered fast-scan
cyclic voltammetry (FSCV) for adenosine, and discovered spontaneous, transient adenosine signaling that lasts
only a few seconds. However, the range and effects of rapid adenosine neuromodulation are not well understood.
Genetically-encoded sensors have recently been developed for neurotransmitter and calcium detection that offer
high sensitivity, selectivity, and spatial resolution. While they can monitor a wide variety of neurochemicals, and
not just electroactive molecules, there are still limited colors to detect different analytes. FSCV combined with
genetically-encoded sensors would be advantageous to detect the neuromodulator adenosine and measure its
downstream effects on dopamine and glutamate neurotransmission, as well as neuronal activity. The long-term
goal of my lab is to develop new tools for monitoring real-time neuromodulation in the brain. The goal of this
project is to develop multiplexed tools to understand neurochemical interactions and apply these tools to
understand adenosine modulation of glutamate, dopamine, and calcium. The central hypothesis is that rapid
adenosine release provides transient, but spatially localized, modulation of neurotransmitters in the brain. In the
first Aim, we will develop multichannel FSCV, with an array of four electrodes, to determine how far adenosine
diffuses in brain slices and the range of its neuromodulatory effects on dopamine release. In the second Aim,
we will combine FSCV with genetically-encoded fluorescent sensors to probe the spatial and temporal profile of
adenosine (measured with FSCV) modulation of dopamine (measured with GRABDA) or glutamate (measured
with iGluSnFR). In the third Aim, we will combine multichannel FSCV and in vivo fiber photometry measurements
of genetically-encoded sensors. We will demonstrate in vivo detection of adenosine, dopamine, and calcium
changes to probe adenosine neuromodulation of neurotransmission and neuronal activity simultaneously. This
research is significant because it develops tools that are broadly applicable for multiplexing neurotransmitter
and neuromodulator measurements, harnessing the combined strengths of FSCV and genetically-encoded
sensors. It is also significant because multiplexed tools will provide an unprecedented picture of the temporal
and spatial dynamics of adenosine neuromodulation. The biological impact is understanding the rapid and local
nature of adenosine neuromodulation, which is important for designing adenosine-based therapeutics for
diseases such as Parkinson’s, ischemia, or traumatic brain injury where adenosine could be neuroprotective.
The multiplexed tools could be applied to monitoring many other neurochemical interactions, in brain slices or in
vivo, and will advance the field of neurochemical monitoring beyond one neurochemical at a time sensing.
项目概要
腺苷作为神经传递快速调节剂的作用是什么?我们如何利用它的力量
潜在的治疗用途?为了回答这些问题,我们需要能够测量的分析工具
我们的实验室开创了快速扫描技术,同时具有高时间和空间分辨率。
循环伏安法(FSCV)检测腺苷,并发现持续的自发、瞬时腺苷信号传导
然而,快速腺苷神经调节的范围和效果尚不清楚。
最近开发了用于神经递质和钙检测的基因编码传感器,可提供
高灵敏度、选择性和空间分辨率,同时它们可以监测多种神经化学物质,并且
不仅仅是电活性分子,用于检测不同分析物的 FSCV 颜色仍然有限。
基因编码传感器将有利于检测神经调节剂腺苷并测量其
对多巴胺和谷氨酸神经传递以及神经元活动的下游影响。
我实验室的目标是开发用于监测大脑实时神经调节的新工具。
该项目是开发多重工具来理解神经化学相互作用并将这些工具应用于
了解腺苷对谷氨酸、多巴胺和钙的调节作用的中心假设是快速。
腺苷释放对大脑中的神经递质提供短暂但空间局部的调节。
第一个目标是,我们将开发多通道 FSCV,具有四个电极阵列,以确定腺苷的距离
在第二个目标中,脑切片中的扩散及其对多巴胺释放的神经调节作用的范围。
我们将 FSCV 与基因编码荧光传感器结合起来,探测
腺苷(用 FSCV 测量) 多巴胺(用 GRABDA 测量)或谷氨酸(用 GRABDA 测量)的调节
在第三个目标中,我们将结合多通道 FSCV 和体内光纤光度测量。
我们将演示腺苷、多巴胺和钙的体内检测。
同时探测腺苷神经传递和神经元活动的变化。
研究意义重大,因为它开发了广泛适用于多路复用神经递质的工具
和神经调节剂测量,利用 FSCV 和基因编码的综合优势
这也很重要,因为多路复用工具将提供前所未有的时间图像。
腺苷神经调节的生物学影响是理解快速和局部的。
腺苷神经调节的性质,这对于设计基于腺苷的疗法非常重要
帕金森病、缺血或脑外伤等疾病,腺苷可以起到神经保护作用。
多重工具可用于监测脑切片或脑切片中的许多其他神经化学相互作用。
体内,并将推动神经化学监测领域超越一次传感一种神经化学物质。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
B. JILL VENTON其他文献
B. JILL VENTON的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('B. JILL VENTON', 18)}}的其他基金
Tunable Carbon Electrodes for in vivo Neurotransmitter Detection
用于体内神经递质检测的可调谐碳电极
- 批准号:
10522260 - 财政年份:2022
- 资助金额:
$ 60.17万 - 项目类别:
Tunable Carbon Electrodes for in vivo Neurotransmitter Detection
用于体内神经递质检测的可调谐碳电极
- 批准号:
10522260 - 财政年份:2022
- 资助金额:
$ 60.17万 - 项目类别:
Tunable Carbon Electrodes for in vivo Neurotransmitter Detection
用于体内神经递质检测的可调谐碳电极
- 批准号:
10656510 - 财政年份:2022
- 资助金额:
$ 60.17万 - 项目类别:
Multiplexed neurochemical methods to understand adenosine neuromodulation
多重神经化学方法了解腺苷神经调节
- 批准号:
10365275 - 财政年份:2022
- 资助金额:
$ 60.17万 - 项目类别:
Tunable Carbon Electrodes for in vivo Neurotransmitter Detection
用于体内神经递质检测的可调谐碳电极
- 批准号:
9889960 - 财政年份:2018
- 资助金额:
$ 60.17万 - 项目类别:
Carbon nanotube fiber and yarn microelectrodes for high temporal resolution measu
用于高时间分辨率测量的碳纳米管纤维和纱线微电极
- 批准号:
8701642 - 财政年份:2014
- 资助金额:
$ 60.17万 - 项目类别:
Mechanism and function of transient adenosine signaling in the brain
大脑中瞬时腺苷信号传导的机制和功能
- 批准号:
8469587 - 财政年份:2012
- 资助金额:
$ 60.17万 - 项目类别:
Mechanism and function of transient adenosine signaling in the brain
大脑中瞬时腺苷信号传导的机制和功能
- 批准号:
9043204 - 财政年份:2012
- 资助金额:
$ 60.17万 - 项目类别:
Mechanism and function of transient adenosine signaling in the brain
大脑中瞬时腺苷信号传导的机制和功能
- 批准号:
8387636 - 财政年份:2012
- 资助金额:
$ 60.17万 - 项目类别:
Mechanism and function of transient adenosine signaling in the brain
大脑中瞬时腺苷信号传导的机制和功能
- 批准号:
8651955 - 财政年份:2012
- 资助金额:
$ 60.17万 - 项目类别:
相似国自然基金
三磷酸腺苷驱动的高分子非平衡自组装体系及其可编程生物功能研究
- 批准号:22375074
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
多聚二磷酸腺苷核糖探针的合成及生物活性研究
- 批准号:22207114
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于S-腺苷甲硫氨酸的生物基氟烷基化试剂的化学-酶法合成及其应用研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
发展胞内腺苷生物荧光探针窥视神经元腺苷的释放途径
- 批准号:
- 批准年份:2022
- 资助金额:54 万元
- 项目类别:面上项目
N6-甲基腺苷(m6A)识别蛋白YTHDC1小分子抑制剂的设计合成与生物活性研究
- 批准号:
- 批准年份:2022
- 资助金额:52 万元
- 项目类别:面上项目
相似海外基金
Multiplexed neurochemical methods to understand adenosine neuromodulation
多重神经化学方法了解腺苷神经调节
- 批准号:
10365275 - 财政年份:2022
- 资助金额:
$ 60.17万 - 项目类别:
Microfluidic System for Monitoring Gliotransmitter Release
用于监测神经胶质递质释放的微流体系统
- 批准号:
9788379 - 财政年份:2018
- 资助金额:
$ 60.17万 - 项目类别:
Identification of Cellular Phenotypes in the Auditory Forebrain
听觉前脑细胞表型的鉴定
- 批准号:
9250907 - 财政年份:2016
- 资助金额:
$ 60.17万 - 项目类别:
Identification of Cellular Phenotypes in the Auditory Forebrain
听觉前脑细胞表型的鉴定
- 批准号:
9226042 - 财政年份:2016
- 资助金额:
$ 60.17万 - 项目类别:
Optogenetic dissection of basal forebrain neurons involved in sleep homeostasis
参与睡眠稳态的基底前脑神经元的光遗传学解剖
- 批准号:
8494703 - 财政年份:2012
- 资助金额:
$ 60.17万 - 项目类别: