Mechano-Instructive Material Inclusions to Direct Meniscus Repair
用于直接半月板修复的力学指导材料夹杂物
基本信息
- 批准号:10534807
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-12-01 至 2023-04-30
- 项目状态:已结题
- 来源:
- 关键词:3-DimensionalAccelerationAddressAdhesivesAdultAnimal ModelApoptosisAreaBehaviorBiochemicalBiocompatible MaterialsBiomechanicsBiophysicsBioreactorsCaringCartilageCell AdhesionCell Culture TechniquesCell DensityCell ProliferationCell physiologyCell-Matrix JunctionCellsChronicCicatrixClinicClinicalCollaborationsCollagenComplexCuesDepositionDevelopmentDiffusionDiseaseDoctor of PhilosophyEncapsulatedEngineeringEnvironmentFormulationFosteringGelGoalsHealthHyaluronic AcidHydrogelsImageIn VitroInfiltrationInjectionsInjuryInterventionKneeLabelLightLongevityMechanicsMediatingMedical centerMeniscus structure of jointMentorsMentorshipMethodsMicrofluidic MicrochipsMiniature SwineModelingModulusMolecular Biology TechniquesMultiscale MechanicsNude RatsOrthopedicsPainPathologyPatientsPennsylvaniaPeptidesPhiladelphiaPilot ProjectsPredispositionPrevalenceProductionProliferatingPropertyQuality of lifeResearchScientistSiteStressSurfaceTimeTissue EngineeringTissuesTrainingTranslatingTranslationsUnited States Department of Veterans AffairsUniversitiesWeight-Bearing stateWorkattenuationcareercareer developmentcell dimensioncell motilityclinical translationclinically relevantcostcost effectivecrosslinkdensitydesigndisabilityextracellularfabricationfortificationhealingimprovedin vivojoint destructionmechanical propertiesmechanical signalmeniscal tearmeniscus injurymigrationnew technologynovelnovel strategiesnovel therapeuticsparticleprofessorrecruitrepairedresearch clinical testingsenescenceskillssubcutaneoustargeted treatmenttissue regenerationwoundwound healing
项目摘要
Career Development and Mentoring: My long-term goals are to become an independent
scientist/professor at a Veterans Affairs Medical Center in proximity to academic universities for expanded
scientific collaborations and to develop and translate novel therapeutics for improved treatment of problematic
orthopaedic injuries. In my doctoral training, I fine-tuned my skillset in small animal models, multi-scale
biomechanics, and molecular biology techniques (e.g., microarrays). From the proposed Research Plan, I will
expand my research skillset by answering fundamental questions about meniscus repair and cell-material
interactions both in vitro and in vivo using large animal models. Additionally, with strong support from my
Mentor, Dr. Robert Mauck, PhD, and my Co-Mentors, Dr. Carla Scanzello, MD, PhD, Dr. Jason Burdick, PhD,
Dr. Miltiadis Zgonis, MD, Dr. Lin Han, PhD, and Dr. Daeyeon Lee, PhD, I will gain diverse mentorship for my
career development, networking, and research on meniscus pathology, large animal models, and biomaterial
synthesis.
Research Plan: The extracellular microenvironment of meniscus cells determines their fate and health.
Meniscus injury and disease disrupt the native structural and mechanical properties of the microenvironment,
leading to loss of tissue function and chronic pathology. To restore meniscus function, this proposal designs
materials that not only restore the native microenvironment at time zero but also recruit cells and subsequently
promote matrix production following meniscus injury. For this, we utilize material-directed strategies to deliver
biophysical cues that beneficially tailor meniscus cell mechanobiology and behavior. Specifically, we first
develop methods to establish stiffness gradients at the wound edge using infiltration of peptide-modified
hyaluronic acid hydrogels to increase 3-dimensional cell mechano-signaling, motility, and contractility (e.g., 3D
durotaxis). Next, once cells have migrated to the wound margin, we promote matrix production via presentation
of transient mechanical cues as well as increased surface area for cell attachment using cell-adhesive and -
degradable micro-inclusions of tunable size and stiffness encapsulated within the bulk hydrogel. Finally, we
carry out pilot studies to establish the efficacy of these new technologies in a large animal model. Completion
of this work will establish a novel treatment for otherwise irreparable meniscus injuries via a set of mechano-
instructive materials to reestablish the cell microenvironment with high feasibility for rapid clinical translation
and broad implications for meniscus mechanobiology and repair. In summary, my proposed research plan,
mentoring plan, as wells as the outstanding environment and facilities at the Philadelphia VA Medical Center
and the University of Pennsylvania will help me to accomplish my career plans to be a successful VA-based
independent scientist.
职业发展和指导:我的长期目标是成为一名独立的人
退伍军人事务医疗中心的科学家/教授,该中心靠近学术大学,可扩展
科学合作并开发和转化新的疗法以改善有问题的治疗
骨科损伤。在我的博士培训中,我微调了我在小动物模型、多尺度
生物力学和分子生物学技术(例如微阵列)。根据拟议的研究计划,我将
通过回答有关半月板修复和细胞材料的基本问题来扩展我的研究技能
使用大型动物模型进行体外和体内相互作用。另外,在我的大力支持下
导师 Robert Mauck 博士,以及我的共同导师 Carla Scanzello 博士、医学博士、博士、Jason Burdick 博士、
Miltiadis Zgonis 博士(医学博士)、Lin Han 博士(博士)和 Daeyeon Lee 博士(博士),我将获得多样化的指导
半月板病理学、大型动物模型和生物材料的职业发展、网络和研究
合成。
研究计划:半月板细胞的细胞外微环境决定其命运和健康。
半月板损伤和疾病会破坏微环境的天然结构和机械特性,
导致组织功能丧失和慢性病理。为了恢复半月板功能,本提案设计
材料不仅可以恢复零时的天然微环境,还可以招募细胞并随后
促进半月板损伤后基质的产生。为此,我们利用以材料为导向的策略来交付
有益于调整半月板细胞力学生物学和行为的生物物理线索。具体来说,我们首先
开发利用肽修饰渗透在伤口边缘建立硬度梯度的方法
透明质酸水凝胶可增加 3 维细胞机械信号、运动性和收缩性(例如 3D
杜罗轴)。接下来,一旦细胞迁移到伤口边缘,我们就会通过呈现促进基质产生
瞬态机械线索以及使用细胞粘合剂增加细胞附着的表面积 -
封装在本体水凝胶内的尺寸和硬度可调的可降解微内含物。最后,我们
开展试点研究,以确定这些新技术在大型动物模型中的功效。完成
这项工作的一部分将通过一系列机械疗法建立一种新的治疗方法,用于治疗其他无法修复的半月板损伤。
重建细胞微环境的指导材料,具有高度的快速临床转化可行性
以及对半月板力学生物学和修复的广泛影响。总而言之,我提出的研究计划,
指导计划,以及费城退伍军人医疗中心出色的环境和设施
宾夕法尼亚大学将帮助我实现我的职业计划,成为一名成功的 VA 学生
独立科学家。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
RYAN C LOCKE其他文献
RYAN C LOCKE的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
面向电力储能集群系统的加速退化试验与寿命评估方法研究
- 批准号:62303293
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
面向计算密集型应用的新型计算范式及其加速器关键技术
- 批准号:62374108
- 批准年份:2023
- 资助金额:48 万元
- 项目类别:面上项目
基于任意精度计算架构的量子信息处理算法硬件加速技术研究
- 批准号:62304037
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
分布式非凸非光滑优化问题的凸松弛及高低阶加速算法研究
- 批准号:12371308
- 批准年份:2023
- 资助金额:43.5 万元
- 项目类别:面上项目
极端光场条件下正电子束的产生、加速和操控研究
- 批准号:12375244
- 批准年份:2023
- 资助金额:53 万元
- 项目类别:面上项目
相似海外基金
The contribution of air pollution to racial and ethnic disparities in Alzheimer’s disease and related dementias: An application of causal inference methods
空气污染对阿尔茨海默病和相关痴呆症的种族和民族差异的影响:因果推理方法的应用
- 批准号:
10642607 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Mitral Regurgitation Quantification Using Dual-venc 4D flow MRI and Deep learning
使用 Dual-venc 4D 流 MRI 和深度学习对二尖瓣反流进行量化
- 批准号:
10648495 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Elucidating the role of pericytes in angiogenesis in the brain using a tissue-engineered microvessel model
使用组织工程微血管模型阐明周细胞在大脑血管生成中的作用
- 批准号:
10648177 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Loss of transcriptional homeostasis of genes lacking CpG islands during aging
衰老过程中缺乏 CpG 岛的基因转录稳态丧失
- 批准号:
10814562 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Dual-Venc 5D flow for Assessment of Congenital Heart Disease in Pediatrics
Dual-Venc 5D 流程用于评估儿科先天性心脏病
- 批准号:
10679809 - 财政年份:2023
- 资助金额:
-- - 项目类别: