Rescuing neurovascular coupling to protect neuronal plasticity and cognition

拯救神经血管耦合以保护神经元可塑性和认知

基本信息

  • 批准号:
    10530887
  • 负责人:
  • 金额:
    $ 180.65万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-07-15 至 2025-06-30
  • 项目状态:
    未结题

项目摘要

Summary Growing evidence points towards the contribution of altered brain microcirculation to cognitive impairment and dementia observed in Alzheimer’s disease (AD) and AD-related dementia (ADRD). Yet, the lack of approaches to image the small cerebrovasculature and investigate its function has hampered our progress in understanding the pathological sequence of vascular cognitive impairment and dementia (VCID). The earliest signs of AD and VCID in patients and mouse models typically involve deficits in spatial and short-term memory—cognitive functions that are critically sustained by synaptic plasticity in the hippocampus. Neurons have limited energy reserves and thus rely on a “just-in-time” neurovascular coupling (NVC) strategy in which active regions signal to the microvasculature to locally dilate and increase local blood flow. Patients and mouse models of AD or CADASIL, a monogenic archetypal form of VCID, show an early deterioration in NVC. Our previous studies have identified a molecular defect at play in capillary endothelial cells and developed a therapeutic approach that acutely restores NVC in the mouse model of AD and CADASIL. Specifically, we found that systemic injection of phospholipid PIP2 is sufficient to rescue neurovascular deficits by enabling Kir2.1 channels to act as sensors of increases in external K+—a product of neuronal activity—and transduce this into a vasodilator electrical signal that rapidly propagates to upstream arterioles, driving vasodilation to produce local hyperemia. Our multidisciplinary team, with complementary expertise in cutting-edge imaging of brain microcirculation and synaptic plasticity underlying learning and memory processes, will test the hypothesis that NVC restoration will mitigate the synaptic plasticity deterioration in the hippocampus, and its behavioral consequences, observed in AD. We further propose to investigate and compare these functions in CADASIL, a vascular driven form of ADRD. To attain this goal, we will advance our PIP2-based strategy to chronically restore NVC in AD and CADASIL models, and assess the treatment efficiency by developing innovative imaging approaches ex vivo, with a novel intact capillary-arteriolar (CaPA) preparation established by our group, and in vivo using implanted graded-index (GRIN) lenses combined with 2-photon microscopy to investigate NVC in the hippocampus. Ultimately, we will measure the effect of NVC rescue on hippocampal synaptic plasticity deterioration caused by AD and CADASIL conditions, and use contextual fear conditioning as a behavioral readout. Completing this study will help elucidate the mechanisms linking NVC dysfunction to dementia in AD/ADRDs, and NVC restoration as a potential therapy. The proposed work has the potential to provide a paradigm-shifting view on how brain microcirculation sustains learning and memory processes.
概括 越来越多的证据表明大脑微循环和 在阿尔茨海默氏病(AD)和 AD 相关痴呆(ADRD)中观察到的痴呆,但缺乏治疗方法。 对小脑血管系统进行成像并研究其功能阻碍了我们理解的进展 血管性认知障碍和痴呆 (VCID) 的病理顺序 AD 和痴呆的最早症状。 患者和小鼠模型中的 VCID 通常涉及空间和短期记忆(认知)缺陷 海马体中由突触可塑性维持的功能的能量有限。 储备,因此依赖于“及时”神经血管耦合(NVC)策略,其中活跃区域发出信号 局部扩张和增加 AD 或小鼠模型的局部血流量。 CADASIL 是 VCID 的单基因原型,我们之前的研究表明 NVC 会出现早期恶化。 确定了毛细血管内皮细胞中起作用的分子缺陷,并开发了一种治疗方法 具体而言,我们发现全身注射可显着恢复 AD 和 CADASIL 小鼠模型中的 NVC。 磷脂 PIP2 足以通过使 Kir2.1 通道充当神经血管的传感器来挽救神经血管缺陷 外部 K+ 的增加(神经活动的产物)并将其转换为血管舒张电信号 迅速传播到上游小动脉,驱动血管舒张,产生局部充血。 多学科团队,在脑微循环和尖端成像方面具有互补的专业知识 突触可塑性是学习和记忆过程的基础,将检验 NVC 恢复的假设 减轻海马突触可塑性恶化及其行为后果,观察到 AD。我们进一步建议研究和比较 CADASIL(ADRD 的一种血管驱动形式)中的这些功能。 为了实现这一目标,我们将推进基于 PIP2 的策略,以长期恢复 AD 和 CADASIL 中的 NVC 模型,并通过开发创新的离体成像方法来评估治疗效率, 我们小组建立了完整的毛细血管-小动脉(CaPA)制剂,并在体内使用植入的分级指数 (GRIN) 将透镜与 2 光子显微镜相结合来研究海马体中的 NVC。 测量 NVC 救援对 AD 和 CADASIL 引起的海马突触可塑性恶化的影响 条件,并使用情境恐惧条件作为行为读数,完成这项研究将有助于阐明。 将 NVC 功能障碍与 AD/ADRD 中的痴呆联系起来的机制,以及 NVC 恢复作为一种潜在的治疗方法。 拟议的工作有可能为大脑微循环如何维持提供一个范式转变的观点 学习和记忆过程。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

MARK L DELL'ACQUA其他文献

MARK L DELL'ACQUA的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('MARK L DELL'ACQUA', 18)}}的其他基金

L-type Ca2+ Channel Spike Regulation of Spine Structural Plasticity and Excitation-Transcription Coupling
脊柱结构可塑性和兴奋转录耦合的 L 型 Ca2 通道尖峰调节
  • 批准号:
    10380180
  • 财政年份:
    2021
  • 资助金额:
    $ 180.65万
  • 项目类别:
L-type Ca2+ Channel Spike Regulation of Spine Structural Plasticity and Excitation-Transcription Coupling
脊柱结构可塑性和兴奋转录耦合的 L 型 Ca2 通道尖峰调节
  • 批准号:
    10209537
  • 财政年份:
    2021
  • 资助金额:
    $ 180.65万
  • 项目类别:
L-type Ca2+ Channel Spike Regulation of Spine Structural Plasticity and Excitation-Transcription Coupling
脊柱结构可塑性和兴奋转录耦合的 L 型 Ca2 通道尖峰调节
  • 批准号:
    10550152
  • 财政年份:
    2021
  • 资助金额:
    $ 180.65万
  • 项目类别:
Amyloid Beta Postsynaptic Signaling through AKAP-anchored Calcineurin
通过 AKAP 锚定的钙调神经磷酸酶进行淀粉样蛋白突触后信号传导
  • 批准号:
    9269635
  • 财政年份:
    2016
  • 资助金额:
    $ 180.65万
  • 项目类别:
Amyloid Beta Postsynaptic Signaling through AKAP-anchored Calcineurin
通过 AKAP 锚定的钙调神经磷酸酶进行淀粉样蛋白突触后信号传导
  • 批准号:
    9180008
  • 财政年份:
    2016
  • 资助金额:
    $ 180.65万
  • 项目类别:
Mechanisms of Neuronal Calcineurin-NFAT Synapse-to-Nucleus Signaling
神经元钙调神经磷酸酶-NFAT 突触至细胞核信号转导机制
  • 批准号:
    8966045
  • 财政年份:
    2013
  • 资助金额:
    $ 180.65万
  • 项目类别:
Mechanisms of Neuronal Calcineurin-NFAT Synapse-to-Nucleus Signaling
神经元钙调神经磷酸酶-NFAT 突触至细胞核信号转导机制
  • 批准号:
    9815268
  • 财政年份:
    2013
  • 资助金额:
    $ 180.65万
  • 项目类别:
Mechanisms of Neuronal Calcineurin-NFAT Synapse-to-Nucleus Signaling
神经元钙调神经磷酸酶-NFAT 突触至细胞核信号转导机制
  • 批准号:
    8666935
  • 财政年份:
    2013
  • 资助金额:
    $ 180.65万
  • 项目类别:
AKAP Regulation of Neuronal L-type Calcium Channel Signaling to the Nucleus
AKAP 对神经元 L 型钙通道向细胞核信号传导的调节
  • 批准号:
    8530768
  • 财政年份:
    2007
  • 资助金额:
    $ 180.65万
  • 项目类别:
AKAP Anchored PKA and Calcineurin Regulation of Neuronal L-type Calcium Channels
AKAP 锚定 PKA 和钙调磷酸酶对神经元 L 型钙通道的调节
  • 批准号:
    8197228
  • 财政年份:
    2007
  • 资助金额:
    $ 180.65万
  • 项目类别:

相似国自然基金

剪接因子U2AF1突变在急性髓系白血病原发耐药中的机制研究
  • 批准号:
    82370157
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
IKZF1-N159Y/S热点突变在急性白血病中的致病机制研究
  • 批准号:
    82300168
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
NMNAT1上调B7-H3介导急性早幼粒细胞白血病免疫逃逸的作用和机制研究
  • 批准号:
    82300169
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
支链氨基酸转氨酶1在核心结合因子急性髓细胞白血病中的异常激活与促进白血病发生的分子机制研究
  • 批准号:
    82370178
  • 批准年份:
    2023
  • 资助金额:
    48 万元
  • 项目类别:
    面上项目
SRSF3/LRP5/Wnt信号通路在急性淋巴细胞白血病中的作用及机制研究
  • 批准号:
    82370128
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目

相似海外基金

Retinal Circuitry Response to Nerve Injury
视网膜回路对神经损伤的反应
  • 批准号:
    10751621
  • 财政年份:
    2023
  • 资助金额:
    $ 180.65万
  • 项目类别:
Role of Primary Sensory Neuron CaMKII Signaling in Regulation of Pain
初级感觉神经元 CaMKII 信号传导在疼痛调节中的作用
  • 批准号:
    10656886
  • 财政年份:
    2023
  • 资助金额:
    $ 180.65万
  • 项目类别:
High content analgesic screening from human nociceptors
从人类伤害感受器中筛选高含量镇痛剂
  • 批准号:
    10578042
  • 财政年份:
    2023
  • 资助金额:
    $ 180.65万
  • 项目类别:
Elucidation of Nanostructure and Function of Spontaneous GABAergic Transmission at the Inhibitory Synapse
抑制性突触自发 GABA 能传递的纳米结构和功能的阐明
  • 批准号:
    10750025
  • 财政年份:
    2023
  • 资助金额:
    $ 180.65万
  • 项目类别:
Prefrontal circuit mechanisms of repetitive transcranial magnetic stimulation
重复经颅磁刺激的前额电路机制
  • 批准号:
    10649292
  • 财政年份:
    2023
  • 资助金额:
    $ 180.65万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了