Development of carbon-nanotube fiber based microelectrode array for neuroscience
用于神经科学的基于碳纳米管纤维的微电极阵列的开发
基本信息
- 批准号:10527492
- 负责人:
- 金额:$ 43.14万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-06-01 至 2024-05-31
- 项目状态:已结题
- 来源:
- 关键词:AcuteAdverse reactionsAgarAreaAutopsyBiologicalBrainBrain DiseasesBypassCaliberCarbon NanotubesCellsCharacteristicsChargeChemicalsChronicCicatrixClinicalCognitiveDegenerative DisorderDevelopmentDevicesDimensionsElectrodesElectron TransportElectrophysiology (science)EncapsulatedEnvironmentEpilepsyEvaluationFailureFast ElectronFiberForeign BodiesGelGenerationsHistologicHourHumanImplantImplantation procedureIn VitroIndividualInflammatoryInflammatory ResponseInjectionsInjuryInsectaIridiumMeasurementMechanicsMetalsMethodsMicroelectrodesModelingMotorNatureNerve TissueNervous System PhysiologyNeuronsNeurosciencesNeurosciences ResearchNeurotransmittersParkinson DiseasePenetrationPerformancePhosphorylcholinePolyethylenesPolymersPositioning AttributePreparationProcessProductionPropertyProtocols documentationRattusReactionRecoveryResolutionSensorySiliconSiteSourceSpeedSurfaceTechnologyTestingTimeTissuesVisceralVisual CortexWaterbasebiomaterial compatibilitybrain circuitrybrain computer interfacebrain tissuecarbon fiberchemical stabilitydetection sensitivityelectric impedanceexperimental studyflexibilityhydrophilicityimplantationin vivoiridium oxidelithographyloss of functionmechanical propertiesmetal oxidemicrostimulationneural stimulationneuron lossneuroprosthesisnovel strategiesparylene Crelating to nervous systemresearch studyresponse
项目摘要
PROJECT SUMMARY/ABSTRACT
The objective of this proposal is to develop, evaluate the potential of Carbon Nanotube (CNT) fibers
Microelectrode Arrays (MEAs) and test their performance in-vivo by inserting them in the visual cortex
of rats in acute and chronic settings. Its novelty relies on the reduced diameter, super-hydrophilic
coating nature of the CNT fibers, and takes advantage of the chemical inertness, flexibility and large
surface area of CNTs. Additional feature of these proposal is the hexagonal packing of 7 CNT fibers
into ~50 µm strands to provide the required stiffness for insertion, and subsequent unraveling into 7
individual electrodes upon insertion and interaction with water. Proposed approach will allow to pack
112 electrodes into a 4x4 array, and will be able to connect to metal contact board produced with
traditional lithography. Currently, most commands emitted from the brain require electrical currents
transported through nerves and tissue to elicit cognitive, sensory, visceral, and motor functions.
Unfortunately, these connection paths are often perturbed due to traumatic or degenerative diseases
causing complete loss of function. Multiple brain diseases like epilepsy and Parkinson's require
microelectrode stimulation as part of the treatment and recovery. Most current technology relies on
metal-, metal oxide or silicon-based electrodes that have a mechanical mismatch and are considered
foreign by cells and neurons causing adverse reactions through inflammatory responses, biofouling
and scar tissue formation as they try to encapsulate the electrode. Moreover, metals employed as
electrodes have: significantly smaller surface area, larger impedance, and reduced charge injection
limit (CIL). To solve these electrode deficiencies currently employed in neural stimulation and recording,
this team has developed unidirectional, biocompatible, densely-packed CNT fiber microelectrodes that
to this date show impressive CIL (15.6 mC/cm2), fast electron transport, and lower impedance than
metals. Surprisingly, these CNT fibers can be assembled up to 16 m/s linear speeds, offering great
potential towards scalability. We expect to demonstrate the potential of our fiber for long them
stimulation and recording, as well as compare their performance as MEAs to the state-of-the-art carbon
fiber, and iridium based MEAs.
项目概要/摘要
该提案的目的是开发、评估碳纳米管(CNT)纤维的潜力
微电极阵列 (MEA) 并通过将其插入视觉皮层来测试其体内性能
其新颖性依赖于直径的减小和超亲水性。
CNT纤维的涂层性质,并利用化学惰性、柔韧性和大
这些提案的另一个特点是 7 根 CNT 纤维的六边形堆积。
成约 50 µm 的股线,以提供插入所需的刚度,并随后拆开成 7
所提出的方法将允许在插入和与水相互作用时封装单个电极。
112 个电极排列成 4x4 阵列,并且能够连接到用
目前,大多数从大脑发出的命令都需要电流。
通过神经和组织运输以激发认知、感觉、内脏和运动功能。
不幸的是,这些连接路径经常因创伤或退行性疾病而受到干扰
导致多种脑部疾病,如癫痫和帕金森病。
目前大多数技术依赖于微电极刺激作为治疗和恢复的一部分。
具有机械失配并被认为是金属、金属氧化物或硅基电极
细胞和神经元的异物通过炎症反应、生物污垢引起不良反应
此外,当它们试图封装电极时,会形成疤痕组织。
电极具有:明显更小的表面积、更大的阻抗以及减少的电荷注入
为了解决目前神经刺激和记录中使用的电极缺陷,
该团队开发了单向、生物相容性、致密的碳纳米管纤维微电极
迄今为止,显示出令人印象深刻的 CIL (15.6 mC/cm2)、快速电子传输和比
令人惊讶的是,这些 CNT 纤维可以以高达 16 m/s 的线速度组装,提供出色的性能。
我们希望展示我们的光纤的长期潜力。
刺激和记录,并将其作为 MEA 的性能与最先进的碳进行比较
光纤和铱基 MEA。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Evaluation of Polymer-Coated Carbon Nanotube Flexible Microelectrodes for Biomedical Applications.
用于生物医学应用的聚合物涂层碳纳米管柔性微电极的评估。
- DOI:
- 发表时间:2023-05-26
- 期刊:
- 影响因子:0
- 作者:Ruhunage, Chethani;Dhawan, Vaishnavi;Nawarathne, Chaminda P;Hoque, Abdul;Cui, Xinyan Tracy;Alvarez, Noe T
- 通讯作者:Alvarez, Noe T
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Noe Alvarez其他文献
Noe Alvarez的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
基于真实世界医疗大数据的中西药联用严重不良反应监测与评价关键方法研究
- 批准号:82274368
- 批准年份:2022
- 资助金额:52 万元
- 项目类别:面上项目
OR10G7错义突变激活NLRP3炎症小体致伊马替尼严重皮肤不良反应的机制研究
- 批准号:
- 批准年份:2022
- 资助金额:52 万元
- 项目类别:面上项目
基于隐狄利克雷分配模型的心血管系统药物不良反应主动监测研究
- 批准号:82273739
- 批准年份:2022
- 资助金额:52 万元
- 项目类别:面上项目
基于真实世界数据的创新药品上市后严重罕见不良反应评价关键方法研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
D.formicigenerans菌通过调控FoxP3-Treg影响PD-1抑制剂所致免疫相关不良反应的机制研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Clinical Impact of the Cefazolin Inoculum Effect
头孢唑啉接种效果的临床影响
- 批准号:
10735541 - 财政年份:2023
- 资助金额:
$ 43.14万 - 项目类别:
7HP349, an oral integrin activator to augment effectiveness of pre-exposure influenza vaccination
7HP349,一种口服整合素激活剂,可增强暴露前流感疫苗接种的有效性
- 批准号:
10693536 - 财政年份:2023
- 资助金额:
$ 43.14万 - 项目类别:
Predicting adverse drug reactions via networks of drug binding pocket similarity
通过药物结合袋相似性网络预测药物不良反应
- 批准号:
10750556 - 财政年份:2023
- 资助金额:
$ 43.14万 - 项目类别:
Predictive modeling of cutaneous immune checkpoint inhibitor toxicities
皮肤免疫检查点抑制剂毒性的预测模型
- 批准号:
10590369 - 财政年份:2023
- 资助金额:
$ 43.14万 - 项目类别: