Understanding Behavioral Variability in Outcome After SCI
了解 SCI 后结果的行为变异
基本信息
- 批准号:10528065
- 负责人:
- 金额:$ 42.62万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-08-01 至 2024-07-31
- 项目状态:已结题
- 来源:
- 关键词:AffectiveAnimal ExperimentationAnimal ModelAnimalsAutonomic DysfunctionAutonomic DysreflexiaBehaviorBehavioralBiological MarkersBiometryBlood PressureCardiovascular systemClinicalControlled StudyContusionsDataDatabasesDetectionDevelopmentDiseaseDisease ManagementEngineeringEventFeedbackFunctional disorderGoalsHealthHealth TechnologyHeart RateHomeIndividualLeadLinkMachine LearningMeasuresMechanicsModelingMonitorMotivationMotorMusOutcomePopulationPublicationsRespirationSensorySeriesSignal TransductionSkin TemperatureSleepSleep ArchitectureSleep disturbancesStressSupervisionTechnologyTelemetryTestingThermographyTimeTrainingWheelchairsbasebiosignatureclinical applicationclinical developmentclinically relevantcombinatorialdata miningdigitaldigital healthhealth managementindexingindividualized medicineinsightinstrumentmachine learning algorithmmedical specialtiesmouse modelnovelnovel strategiespainful neuropathypre-clinicalpredictive markerpreferencepreventprototyperespiratorysensorsensor technologysham surgeryspatiotemporalsupervised learningtranslational impactunsupervised learningwearable devicewearable sensor technology
项目摘要
PROJECT SUMMARY
Opportunities now exist to implement a paradigm shift in health management towards individualized physio-
behavioral (biometric) monitoring - to predict, to prevent, and to better manage disease using wearable
technologies, as well as embedded sensor technologies within wheelchairs as well as within the home.
Our broad objective is to interpret collected combinatorial changes in the same biometric variables captured
noninvasively during the progression of SCI in naturally behaving mice. In well-controlled animal studies, we
propose to apply machine learning algorithms to identify ‘digital biosignatures’ that are predictive to disease
emergence and/or expression, and therefore of use in feedback-based mitigation. To achieve this, we have
engineered specialty instrumented mouse home-cages with commercially available sensors that enable continuous
long-term noninvasive home cage capture of these biometrics to prototype development of such digital
biosignatures.
Emphasis is on understanding temporal interrelations in the emergence of sleep disturbances, neuropathic pain,
thermoregulatory dysfunction, cardiorespiratory dysfunction and autonomic crises (autonomic dysreflexia) after
SCI. Accordingly, home cage sensor-based capture includes all motor events, respiration, heart rate, 3-state sleep,
skin temperature thermography and sensory preference testing.
Our overarching hypothesis is that combined continuous capture several variables during the progression of SCI
will identify novel ‘digital biosignatures’ that link to emergent dysfunction. The longer-term goal is to incorporate
capture of digital biosignatures into real-time feedback-based approaches that limit disease expression.
Two SCI models will be used to quantify variability in emergent dysfunction with the temporal correspondence
of alterations in measured biometrics: [1] T9-10 contusion SCI and [2] T2-3 complete transection. For both
experimental series, variables will be continuously captured in specialty instrumented home cages located in
environmentally controlled chambers both before and for 10 weeks after SCI or sham surgery. Captured
biometrics will be further categorized for machine learning based on measures of SCI -induced dysfunction from
more conventional tests of sensory and autonomic dysfunction to link noninvasive biometric digital biosignatures
with established measures physio-behavioral dysfunction after SCI.
If successful, capturing digital biosignatures of dysfunction in real time may have translational impact on
individualized medicine applications in SCI individuals. This is because acquired biosignatures may then serve a
template recognition function from analogously captured biometrics obtained from embedded/wearable sensors
in clinical populations.
项目概要
现在有机会实现健康管理向个性化生理管理的范式转变。
行为(生物识别)监测 - 使用可穿戴设备预测、预防和更好地管理疾病
技术,以及轮椅和家庭内的嵌入式传感器技术。
我们的总体目标是解释捕获的相同生物特征变量中收集到的组合变化
在良好对照的动物研究中,我们在自然行为小鼠的 SCI 进展过程中进行了非侵入性治疗。
提议应用机器学习算法来识别可预测疾病的“数字生物特征”
出现和/或表达,因此可用于基于反馈的缓解。为了实现这一目标,我们有。
精心设计的专业仪器仪表鼠标家笼,配有市售传感器,可实现连续
长期非侵入性的家庭笼子捕获这些生物特征,以开发此类数字的原型
生物特征。
重点是了解睡眠障碍、神经性疼痛、
体温调节功能障碍、心肺功能障碍和自主神经危机(自主神经反射异常)
因此,基于笼式传感器的捕获包括所有运动事件、呼吸、心率、三态睡眠、
皮肤温度热成像和感官偏好测试。
我们的总体假设是,在 SCI 进展过程中连续捕获多个变量
将识别与紧急功能障碍相关的新颖的“数字生物特征”。
将数字生物特征捕获到基于实时反馈的方法中,以限制疾病的表达。
两个 SCI 模型将用于通过时间对应来量化紧急功能障碍的变异性
测量的生物特征变化:[1] T9-10 挫伤 SCI 和 [2] T2-3 完全横切。
实验系列中,变量将在位于
SCI 或假手术之前和之后 10 周的环境控制室。
生物识别技术将根据 SCI 引起的功能障碍的测量进一步分类为机器学习
对感觉和自主神经功能障碍进行更常规的测试,以链接无创生物识别数字生物特征
SCI 后生理行为功能障碍的既定措施。
如果成功,实时捕获功能障碍的数字生物特征可能会对
这是因为获得的生物特征可以用于 SCI 个体的个体化医学应用。
从嵌入式/可穿戴传感器获得的类似捕获的生物特征的模板识别功能
在临床人群中。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
SHAWN HOCHMAN其他文献
SHAWN HOCHMAN的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('SHAWN HOCHMAN', 18)}}的其他基金
Modifiability of Conduction Across Preganglionic Axonal Branch Points
跨节前轴突分支点传导的可修改性
- 批准号:
10196286 - 财政年份:2021
- 资助金额:
$ 42.62万 - 项目类别:
Recruitment principles and injury-induced plasticity in thoracic paravertebral sympathetic postganglionic neurons
胸椎旁交感节后神经元的募集原理和损伤诱导的可塑性
- 批准号:
9368086 - 财政年份:2017
- 资助金额:
$ 42.62万 - 项目类别:
Recruitment principles and injury-induced plasticity in thoracic paravertebral sympathetic postganglionic neurons
胸椎旁交感节后神经元的募集原理和损伤诱导的可塑性
- 批准号:
10208977 - 财政年份:2017
- 资助金额:
$ 42.62万 - 项目类别:
Recruitment principles and injury-induced plasticity in thoracic paravertebral sympathetic postganglionic neurons
胸椎旁交感节后神经元的募集原理和损伤诱导的可塑性
- 批准号:
10208977 - 财政年份:2017
- 资助金额:
$ 42.62万 - 项目类别:
Control of sensory function in mammalian spinal cord
哺乳动物脊髓感觉功能的控制
- 批准号:
8231468 - 财政年份:2010
- 资助金额:
$ 42.62万 - 项目类别:
Control of sensory function in mammalian spinal cord
哺乳动物脊髓感觉功能的控制
- 批准号:
8044688 - 财政年份:2010
- 资助金额:
$ 42.62万 - 项目类别:
Control of sensory function in mammalian spinal cord
哺乳动物脊髓感觉功能的控制
- 批准号:
8627658 - 财政年份:2010
- 资助金额:
$ 42.62万 - 项目类别:
Control of sensory function in mammalian spinal cord
哺乳动物脊髓感觉功能的控制
- 批准号:
8426151 - 财政年份:2010
- 资助金额:
$ 42.62万 - 项目类别:
Control of sensory function in mammalian spinal cord
哺乳动物脊髓感觉功能的控制
- 批准号:
7900235 - 财政年份:2010
- 资助金额:
$ 42.62万 - 项目类别:
DOPAMINERGIC CONTROL OF SPINAL CORD AND RESTLESS LEGS
多巴胺能控制脊髓和不宁腿
- 批准号:
6681382 - 财政年份:2003
- 资助金额:
$ 42.62万 - 项目类别:
相似国自然基金
构建环状RNA调控肝癌干细胞干性维持的实验动物模型及机制研究
- 批准号:32070533
- 批准年份:2020
- 资助金额:58 万元
- 项目类别:面上项目
大鼠创伤性颞下颌关节强直实验动物模型的构建及发生机制研究
- 批准号:81970954
- 批准年份:2019
- 资助金额:55 万元
- 项目类别:面上项目
髌骨脱位后股骨滑车发育不良的实验动物模型研究
- 批准号:81873983
- 批准年份:2018
- 资助金额:75.0 万元
- 项目类别:面上项目
基于双靶分子识别的Dox调控的增强型IL13 CAR-T在恶性脑胶质瘤动物模型中的实验治疗研究
- 批准号:81773265
- 批准年份:2017
- 资助金额:50.0 万元
- 项目类别:面上项目
基于神经中央软骨生长调控的早发性脊柱侧弯矫正模式的动物实验研究
- 批准号:81772422
- 批准年份:2017
- 资助金额:60.0 万元
- 项目类别:面上项目
相似海外基金
Neural and Molecular Mechanisms of Emotional Dysfunction after Sepsis
脓毒症后情绪功能障碍的神经和分子机制
- 批准号:
10175045 - 财政年份:2018
- 资助金额:
$ 42.62万 - 项目类别:
Fundamental subcortical mechanisms of affective processing
情感处理的基本皮层下机制
- 批准号:
9751070 - 财政年份:2016
- 资助金额:
$ 42.62万 - 项目类别:
Reinstatement of cocaine seeking by social defeat
由于社会失败而恢复可卡因寻求
- 批准号:
8662737 - 财政年份:2013
- 资助金额:
$ 42.62万 - 项目类别: