Lesions and loss of smooth muscle cells in brain underlies small vessel disease
大脑中平滑肌细胞的病变和损失是小血管疾病的基础
基本信息
- 批准号:10527075
- 负责人:
- 金额:$ 198.93万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-08-15 至 2025-07-31
- 项目状态:未结题
- 来源:
- 关键词:3-Dimensional4D ImagingAdolescentAffectAlzheimer&aposs DiseaseAnimal ModelAnimalsAreaAtrophicAutopsyBasal GangliaBirthBlood VesselsBlood capillariesBrainBrain InjuriesBrain PathologyBrain imagingBrain regionCADASILCaliberCell membraneCellsCerebral hemisphere hemorrhageCerebral small vessel diseaseCerebrovascular CirculationCerebrovascular systemCollectionComplexComputer ModelsCoupledDataData SetDementiaDevelopmentDiseaseDisease modelDistalElectrophysiology (science)Emerging TechnologiesEndothelial CellsEndotheliumEnterobacteria phage P1 Cre recombinaseErythrocytesFunctional disorderHistologyHumanImageImpaired cognitionInfarctionInheritedIon ChannelIschemic StrokeLabelLesionLoxP-flanked alleleMagnetic Resonance ImagingMeasuresMembrane PotentialsMethodologyMicroelectrodesMicrospheresMicrovascular DysfunctionModelingMolecularMusNOTCH3 geneNeurobehavioral ManifestationsPathogenesisPathologyPatientsPericytesPhenocopyPlayPopulationPreparationPropertyRecordsRegulationReportingResolutionRestRetinaSamplingSmooth Muscle MyocytesStrokeTechniquesTechnologyTestingThalamic structureTimeTransgenic MiceTreesUltrasonographyage relatedarteriolebasebrain parenchymabrain tissuecapillary bedcell typecerebral blood volumecerebral microvasculatureclinically relevantcognitive functiondensityexpectationgain of function mutationin vivoin vivo imaginginnovationinsightloss of function mutationmouse modelnovelparenchymal arteriolesparticlepressurereceptorresponsespatiotemporalvascular contributionsvenulewhite matter
项目摘要
In response to the FOA, PAR-22-026, we propose an integrated and technologically/conceptually innovative approach to
advance our mechanistic understanding of how dysfunction of small brain vessels can have long-term impacts on the brain
parenchyma and cause cognitive impairment. Cerebral small vessel disease (cSVD) accounts for up to 25% of ischemic
strokes and more than 90% of spontaneous intracerebral hemorrhages (ICHs), and as such is a major driver of dementia.
Recent studies have shown that there are at least four types of mural cells defining four major microvascular zones:
smooth muscle cells (SMCs) on arterioles, contractile pericytes (PCs) on the post-arteriole region of the capillary bed (i.e.,
transition zone), non-contractile PCs on distal capillaries and venular PCs on venules. Loss of arteriolar SMCs in human
post-mortem brains is a feature shared by both multifactorial and inherited cSVD, whether associated with ischemic
strokes or ICHs. We have provided compelling evidence that loss of SMCs on arterioles coupled with enhanced function
of contractile PCs on the transition zone mutually reinforce each other to cause ICHs, and recently discovered that
arteriolar SMCs and contractile PCs in the transition zone are lost early in the brain and retina of clinically relevant mouse
models of ischemic cSVDs with gain- or loss-of-function mutations in the NOTCH3 receptor. On the basis of these and
other observations, we propose that loss of SMCs specifically in brain arterioles is a common factor underlying the
development of cSVDs and that changes in the properties/density of contractile PCs in the post-arteriole transition zone
modify disease presentation. To test this, we will explore the causal relationship between the loss of SMCs/PCs and cSVD-
related brain pathologies and cognitive symptoms (Aim 1) and determine how loss of SMCs/contractile PCs compromises
integrative vascular functions (Aim 2). To this end, we will employ existing and novel mouse models with conditional
inactivation of Notch3 in specific mural cell populations and deploy a powerful array of new techniques, including 1) a
novel coordinate-based object analysis methodology capable of simultaneously quantifying all imageable parameters,
including small vessel pathology, in massive 4D (3D over time) imaging datasets from high-resolution sections of the entire
brain; 2) a novel pressurized retina preparation in conjunction with labeled red blood cells and microspheres for
quantitatively assessing the impact of small vessel pathology on intravascular pressure and flow across different
microvascular segments; and 3) ultrafast functional ultrasound imaging, an emerging technology that can non-invasively
sample cerebral blood volume changes in vivo in a complete coronal section of a mouse brain with a high spatiotemporal
resolution, for elucidating how small brain vessel pathologies affect cerebral blood flow regulation in deep parts of the
brain. We expect that the proposed studies will contribute to a better understanding of the mechanistic basis of deep
brain lesions and cognitive impairment in cSVDs and establish arteriolar SMCs and contractile PCs as critical new targets.
为了响应 FOA,PAR-22-026,我们提出了一种综合的、技术/概念创新的方法来
增进我们对小脑血管功能障碍如何对大脑产生长期影响的机制理解
实质并导致认知障碍。脑小血管病 (cSVD) 占缺血性心脏病的 25%
中风和超过 90% 的自发性脑出血 (ICH),因此是痴呆症的主要驱动因素。
最近的研究表明,至少有四种类型的壁细胞定义了四个主要的微血管区域:
小动脉上的平滑肌细胞 (SMC)、毛细血管床小动脉后区域的收缩周细胞 (PC)(即,
过渡区)、远端毛细血管上的非收缩性 PC 和小静脉上的小静脉 PC。人类小动脉平滑肌细胞的损失
死后大脑是多因素和遗传性 SVD 共有的一个特征,无论是否与缺血有关
中风或脑出血。我们提供了令人信服的证据,证明小动脉 SMC 的丢失与功能的增强相结合
过渡区的收缩 PC 相互增强导致 ICH,最近发现
过渡区的小动脉 SMC 和收缩性 PC 在临床相关小鼠的大脑和视网膜中早期丢失
NOTCH3 受体功能获得或丧失突变的缺血性 SVD 模型。在此基础上和
根据其他观察结果,我们认为 SMC 的丢失(特别是脑小动脉中的 SMC 丢失)是导致该疾病的一个常见因素
CSVD 的发展以及小动脉后过渡区收缩性 PC 的特性/密度的变化
修改疾病表现。为了测试这一点,我们将探讨 SMC/PC 丢失与 cSVD 之间的因果关系
相关的大脑病理学和认知症状(目标 1)并确定 SMC/收缩性 PC 的损失如何影响
综合血管功能(目标 2)。为此,我们将采用现有的和新颖的小鼠模型,并有条件
使特定壁细胞群中的 Notch3 失活并部署一系列强大的新技术,包括 1)
新颖的基于坐标的对象分析方法能够同时量化所有可成像参数,
包括小血管病理学,来自整个血管高分辨率切片的大规模 4D(随时间变化的 3D)成像数据集
脑; 2) 一种新型加压视网膜制剂,与标记的红细胞和微球相结合,用于
定量评估小血管病理学对不同血管内压力和血流的影响
微血管段; 3)超快功能超声成像,这是一种新兴技术,可以非侵入性地
在具有高时空变化的小鼠大脑的完整冠状切片中对体内脑血容量变化进行采样
分辨率,用于阐明小脑血管病变如何影响大脑深部的脑血流调节
脑。我们期望所提出的研究将有助于更好地理解深层机制的基础
CSVD 中的脑损伤和认知障碍,并将小动脉 SMC 和收缩性 PC 作为重要的新目标。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
ANNE JOUTEL其他文献
ANNE JOUTEL的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('ANNE JOUTEL', 18)}}的其他基金
Notch3 signaling in small-artery-diseases
小动脉疾病中的 Notch3 信号传导
- 批准号:
7350196 - 财政年份:2006
- 资助金额:
$ 198.93万 - 项目类别:
Notch3 signaling in small-artery-diseases
小动脉疾病中的 Notch3 信号传导
- 批准号:
7575204 - 财政年份:2006
- 资助金额:
$ 198.93万 - 项目类别:
Notch3 signaling in small-artery-diseases
小动脉疾病中的 Notch3 信号传导
- 批准号:
7175351 - 财政年份:2006
- 资助金额:
$ 198.93万 - 项目类别:
Notch3 signaling in small-artery-diseases
小动脉疾病中的 Notch3 信号传导
- 批准号:
7024809 - 财政年份:2006
- 资助金额:
$ 198.93万 - 项目类别:
相似国自然基金
融合闪烁光刺激与4D定量OCTA的视网膜功能成像技术与应用研究
- 批准号:62075189
- 批准年份:2020
- 资助金额:63 万元
- 项目类别:面上项目
复杂背景中行人目标的4D光场视觉感知机制与识别方法研究
- 批准号:61906133
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
基于结构与动态联合先验的PET心肌灌注直接4D参数成像方法
- 批准号:81871437
- 批准年份:2018
- 资助金额:57.0 万元
- 项目类别:面上项目
基于高光谱-可见光成像的水稻叶绿素4D表型提取方法研究
- 批准号:31800305
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
基于4D血流MRI成像的左心房室流场变化介导的炎症反应在房颤心肌纤维化中的始动作用及机制研究
- 批准号:81601462
- 批准年份:2016
- 资助金额:18.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Patient specific computational modeling of fluid-structure interactions of cerebrospinal fluid for biomarkers in Alzheimer's disease
阿尔茨海默病生物标志物脑脊液流固相互作用的患者特定计算模型
- 批准号:
10644281 - 财政年份:2023
- 资助金额:
$ 198.93万 - 项目类别:
Mitral Regurgitation Quantification Using Dual-venc 4D flow MRI and Deep learning
使用 Dual-venc 4D 流 MRI 和深度学习对二尖瓣反流进行量化
- 批准号:
10648495 - 财政年份:2023
- 资助金额:
$ 198.93万 - 项目类别:
Dual-Venc 5D flow for Assessment of Congenital Heart Disease in Pediatrics
Dual-Venc 5D 流程用于评估儿科先天性心脏病
- 批准号:
10679809 - 财政年份:2023
- 资助金额:
$ 198.93万 - 项目类别:
4D Flow MRI in Assessment of True Severe Low-Gradient Aortic Stenosis
4D Flow MRI 评估真正的严重低梯度主动脉瓣狭窄
- 批准号:
10735953 - 财政年份:2023
- 资助金额:
$ 198.93万 - 项目类别:
Artificial Intelligence powered virtual digital twins to construct and validate AI automated tools for safer MR-guided adaptive RT of abdominal cancers
人工智能支持虚拟数字双胞胎来构建和验证人工智能自动化工具,以实现更安全的 MR 引导的腹部癌症自适应放疗
- 批准号:
10736347 - 财政年份:2023
- 资助金额:
$ 198.93万 - 项目类别: