Establishing the role of OCRL as a novel ciliary gene in weight regulation in human and murine models
建立 OCRL 作为新型纤毛基因在人类和小鼠模型体重调节中的作用
基本信息
- 批准号:10528081
- 负责人:
- 金额:$ 20.56万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-01 至 2025-05-31
- 项目状态:未结题
- 来源:
- 关键词:3 year oldASPM geneAddressAdultAffectAgonistAllelesAlstrom syndromeAnimal ModelAnimalsAutomobile DrivingBardet-Biedl SyndromeBehavioralBiological AssayBiological ModelsBody WeightBody mass indexBrainBrothersC-terminalC57BL/6 MouseCRISPR/Cas technologyCell LineCell membraneCellsChildChildhoodCiliaClathrinClinicalCognitiveCytoskeletonDNADataDiseaseEpilepsyEukaryotic CellExonsFDA approvedFamilyFibroblastsFrameshift MutationFunctional disorderFutureGene ExpressionGenesGeneticGrowthHeightHigh Fat DietHomeostasisHumanHyperphagiaHypothalamic structureHypoventilationIn VitroInheritedInositolKidneyKnockout MiceKnowledgeLeadLeptinLinkLipidsLysosomesMeasurementMeasuresMediatingMelanocortin 4 ReceptorMembraneModelingMolecular BiologyMorbid ObesityMothersMusMutationN-terminalNeuronsNeuropeptidesNeurosecretory SystemsObesityObesity EpidemicOculocerebrorenal SyndromeOnline Mendelian Inheritance In ManOrganellesOverweightPH DomainPathway interactionsPatientsPhenotypePhosphatidylinositolsPhosphoric Monoester HydrolasesPlayPolyphosphatesPositioning AttributePrevalencePro-OpiomelanocortinProductionProtein IsoformsProteinsRNA InterferenceRare DiseasesRegulationRegulatory PathwayRestRoleSatiationSensorySeriesSiblingsSignal PathwaySignal TransductionSomatotropin-Releasing HormoneStructureStructure of nucleus infundibularis hypothalamiSyndactylySyndromeTestingTimeTissuesToesTranscriptTriad Acrylic ResinVariantWeightZebrafishalpha-Melanocyte stimulating hormonebehavioral impairmentbody systemciliopathyconditional knockoutcongenital cataractearly childhoodenergy balancegene networkhuman modelhumanized mousein vivoinduced pluripotent stem cellinorganic phosphateinositol-1,4,5-trisphosphate 5-phosphataseknock-downknockout geneloss of functionmalemetabolic phenotypemouse modelmutantnovelobesity in childrenparaventricular nucleuspostnatalprobandreceptorresponserho GTP-Binding Proteinsrho GTPase-activating proteinsingle-cell RNA sequencingstemtherapeutic targettraffickingtrans-Golgi Networktranscriptome sequencing
项目摘要
PROJECT SUMMARY
Understanding the molecular biology behind weight regulation is imperative to address the growing epidemic of
obesity and the urgent need for therapies. The primary cilium has been identified as an important organelle for
signaling and function of eukaryotic cells including the cells involved in energy homeostasis. Ciliary dysfunction
results in several human syndromes, collectively called ciliopathies, that are associated with diverse
phenotypes affecting nearly every tissue and organ system. Some ciliopathies, such as Bardet-Biedl syndrome
and Alström syndrome, present with obesity in childhood. Primary cilia are known to be expressed in the
weight regulation centers of the hypothalamus. Loss of function in these primary cilia causes disruption in the
neuroendocrine signaling pathways involved in energy homeostasis, resulting in obesity. Animal models show
that disruption of ciliary gene(s) in neurons secreting pro-opiomelanocortin, the satiety producing neuropeptide,
causes hyperphagia and obesity. The number of genes identified to be involved in the function of the primary
cilium have increased over time. Recent evidence shows that the inositol phosphatase OCRL, a gene known to
cause Oculocerebral syndrome of Lowe (LS), is expressed in the cilia, and may have a role in regulating the
levels of phosphoinositol-4-phosphate and trafficking in the cilia. OCRL is also highly expressed in the
hypothalamus, especially the cells expressing the satiety neuropeptide, pro-opiomelanocortin (POMC), and
growth hormone releasing hormone. We have identified a family of two male siblings with a previously
unknown mutation in the C-terminus of OCRL that is only expressed in the brain specific isoform. The proband
has severe obesity and other diverse clinical features, different from those seen in LS, but overlapping with
ciliopathy. We hypothesize that this loss of function variant limited to the brain-specific isoform causes a
diverse phenotype including severe obesity, but does not affect the other somatic tissues. Thus, it provides a
unique opportunity to study the brain limited impact of the loss of function of OCRL. This proposal seeks to use
this phenotype to establish the role of OCRL as a ciliary gene involved in weight regulation in human and
mouse models. We will use our patient-specific induced pluripotent stem cell line, their isogenic control and
allelic series to differentiate into arcuate-like hypothalamic neurons expressing POMC to assess the impact of
the mutation on the neuropeptide. We will also use conditional knockout of the gene by AAV-mediated RNA
interference in the arcuate and paraventricular nuclei of the brain in LS-specific humanized mouse model to
assess the phenotype. These studies will contribute a new gene to the growing list of genes involved in weight
regulation and ciliary function. It will also expand the phenotype for LS and potentially provide avenues to
explore therapies in future.
项目概要
了解体重调节背后的分子生物学对于解决日益流行的问题至关重要
肥胖和对治疗的迫切需要初级纤毛已被确定为重要的细胞器。
真核细胞的信号传导和功能,包括参与能量稳态的细胞。
导致多种人类综合症,统称为纤毛病,与多种疾病相关
影响几乎所有组织和器官系统的一些纤毛病,例如 Bardet-Biedl 综合征。
已知在儿童时期出现肥胖的阿尔斯特罗姆综合征在初级纤毛中表达。
这些初级纤毛的功能丧失会导致下丘脑体重调节中心的破坏。
动物模型显示,神经内分泌途径信号参与能量稳态,导致肥胖。
破坏分泌阿黑皮素原(产生饱腹感的神经肽)的神经元中的睫状基因,
导致食欲过盛和肥胖的基因数量被确定与主要功能有关。
最近的证据表明,肌醇磷酸酶 OCRL(一种已知的基因)会随着时间的推移而增加。
导致劳氏眼脑综合征 (LS) 的疾病,在纤毛中表达,可能在调节
4-磷酸磷酸肌醇的水平和纤毛中的运输也在 OCRL 中高度表达。
下丘脑,尤其是表达饱腹感神经肽阿片黑皮素原 (POMC) 的细胞,
我们已经确定了一个由两个男性兄弟姐妹组成的家庭,他们以前都患有生长激素释放激素。
OCRL C 末端的未知突变仅在先证者大脑特定亚型中表达。
具有严重肥胖和其他不同的临床特征,与 LS 中所见的不同,但与
我们发现这种仅限于大脑特异性亚型的功能丧失变异会导致
多种表型,包括严重肥胖,但不影响其他体细胞组织,因此,它提供了一种治疗方法。
该提案寻求利用 OCRL 功能丧失对大脑的有限影响进行研究的独特机会。
这种表型确立了 OCRL 作为参与人类体重调节的纤毛基因的作用
我们将使用我们的患者特异性诱导多能干细胞系、其同基因对照和
等位基因系列分化为表达 POMC 的弓状下丘脑神经元,以评估
我们还将通过 AAV 介导的 RNA 条件性敲除该基因。
LS 特异性人源化小鼠模型中大脑弓状核和室旁核的干扰
这些研究将为不断增长的与体重相关的基因列表贡献一个新的基因。
它还将扩大 LS 的表型,并可能提供途径。
未来探索治疗方法。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Vidhu V. Thaker其他文献
Recombinant growth hormone therapy for cystic fibrosis in children and young adults.
重组生长激素治疗儿童和年轻人囊性纤维化。
- DOI:
- 发表时间:
2013 - 期刊:
- 影响因子:5.8
- 作者:
Vidhu V. Thaker;Ben Carter - 通讯作者:
Ben Carter
Endocrine and behavioural features of Lowe syndrome and their potential molecular mechanisms
Lowe综合征的内分泌和行为特征及其潜在分子机制
- DOI:
- 发表时间:
2022 - 期刊:
- 影响因子:4
- 作者:
Cecilia Sena;Grazia Iannello;Alicja A. Skowronski;Katelyn Dannheim;L. Cheung;P. Agrawal;J. Hirschhorn;P. Zeitler;C. Leduc;G. Stratigopoulos;Vidhu V. Thaker - 通讯作者:
Vidhu V. Thaker
Hypothyroidism in Infants With Congenital Heart Disease Exposed to Excess Iodine
患有先天性心脏病的婴儿摄入过量碘后会出现甲状腺功能减退症
- DOI:
- 发表时间:
2017 - 期刊:
- 影响因子:4.1
- 作者:
Vidhu V. Thaker;M. Galler;A. Marshall;M. Almodovar;H. Hsu;Christopher J. Addis;H. Feldman;Rosalind S. Brown;B. Levine - 通讯作者:
B. Levine
Vitamin K supplementation for cystic fibrosis.
补充维生素 K 治疗囊性纤维化。
- DOI:
- 发表时间:
2020 - 期刊:
- 影响因子:8.4
- 作者:
V. Jagannath;Vidhu V. Thaker;A. Chang;A. Price - 通讯作者:
A. Price
Vitamin K supplementation for cystic fibrosis.
补充维生素 K 治疗囊性纤维化。
- DOI:
10.1002/14651858.cd008482.pub2 - 发表时间:
2024-09-14 - 期刊:
- 影响因子:0
- 作者:
V. Jagannath;Z. Fedorowicz;Vidhu V. Thaker;A. Chang - 通讯作者:
A. Chang
Vidhu V. Thaker的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Vidhu V. Thaker', 18)}}的其他基金
Genetics of early childhood obesity and its clinical implications
儿童早期肥胖的遗传学及其临床意义
- 批准号:
10445160 - 财政年份:2016
- 资助金额:
$ 20.56万 - 项目类别:
Genetics of early childhood obesity and its clinical implications
儿童早期肥胖的遗传学及其临床意义
- 批准号:
9757772 - 财政年份:2016
- 资助金额:
$ 20.56万 - 项目类别:
Genetics of early childhood obesity and its clinical implications
儿童早期肥胖的遗传学及其临床意义
- 批准号:
10445160 - 财政年份:2016
- 资助金额:
$ 20.56万 - 项目类别:
Genetics of early childhood obesity and its clinical implications
儿童早期肥胖的遗传学及其临床意义
- 批准号:
10013209 - 财政年份:2016
- 资助金额:
$ 20.56万 - 项目类别:
相似国自然基金
ASPM基因对BOD1的转录调控在维持小头症食蟹猴认知功能中的作用
- 批准号:81873736
- 批准年份:2018
- 资助金额:82.0 万元
- 项目类别:面上项目
相似海外基金
Does hereditary microcephalic responsible gene ASPM control a cell cycle and cell death in the neurogenesis process?
遗传性小头负责基因 ASPM 是否控制神经发生过程中的细胞周期和细胞死亡?
- 批准号:
18K15683 - 财政年份:2018
- 资助金额:
$ 20.56万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Defining the crucial role of MAGOH in cerebellar development and the potential for targeting the EJC in medulloblastoma treatment
定义 MAGOH 在小脑发育中的关键作用以及在髓母细胞瘤治疗中靶向 EJC 的潜力
- 批准号:
10199065 - 财政年份:2018
- 资助金额:
$ 20.56万 - 项目类别:
Investigating ASPM regulation of asymmetric division for therapeutic opportunities
研究 ASPM 对不对称分裂的调节以获得治疗机会
- 批准号:
9355055 - 财政年份:2016
- 资助金额:
$ 20.56万 - 项目类别:
The functional significance of ASPM, responsible gene for human microcephaly, in the activation of adult neural stem cells - a new approach to brain anti-aging
ASPM(人类小头畸形的负责基因)在成体神经干细胞激活中的功能意义——大脑抗衰老的新方法
- 批准号:
15K01722 - 财政年份:2015
- 资助金额:
$ 20.56万 - 项目类别:
Grant-in-Aid for Scientific Research (C)