PROJECT 1: TIME-Based Spatiotemporal Cancer Immunograms Predictive for Immunotherapy-Targeted Therapy Sequential Combinations
项目 1:基于时间的时空癌症免疫图预测免疫治疗靶向治疗顺序组合
基本信息
- 批准号:10526103
- 负责人:
- 金额:$ 82.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-22 至 2027-08-31
- 项目状态:未结题
- 来源:
- 关键词:Adoptive Cell TransfersAftercareAntigensAreaBiopsyCancer HistologyCellsChildClinicalClinical DataClinical TrialsClonal ExpansionCombination immunotherapyCombined Modality TherapyCutaneous MelanomaDataData AnalysesData SetDoseEngineeringEnvironmentFormalinFoundationsFreezingGoalsImmuneImmune systemImmunocompetentImmunologic FactorsImmunotherapyInflammatoryLeadMAP Kinase GeneMEKsMalignant NeoplasmsMetastatic malignant neoplasm to brainMitogen-Activated Protein Kinase InhibitorModelingMolecularMultiomic DataMusMutationOncogenesOutcomeParaffin EmbeddingPatientsPhysiologicalProgression-Free SurvivalsRegimenResistanceResolutionResourcesRetrospective StudiesRoleSamplingT cell therapyT-Cell ReceptorT-LymphocyteTestingTherapeuticTherapy trialTimeTissuesTreatment EfficacyTriplet Multiple BirthTumor AntigensTumor-associated macrophagesValidationWorkanti-CTLA4anti-PD-1anti-PD-L1basebiobankclinical developmentclinically relevantcombinatorialcomputational pipelinesdata resourcedesigndriver mutationengineered T cellsimmune checkpoint blockadeimmunogenicimmunotherapy trialsimprovedin vivoinhibitorinhibitor therapyinsightmelanomamoviemultiple omicsmutantneoplastic celloverexpressionposterspreventrational designresistance mechanismresponsespatiotemporalsubcutaneoustargeted treatmenttherapy outcometooltreatment responsetumortumor-immune system interactions
项目摘要
Project 1 Summary/Abstract
Combining immunotherapy with other therapy regimens, particularly targeted therapy, is a highly active area of
exploration with the goal of improving anti-tumor efficacy and extending therapeutic benefits to more patients or
tumor types. As the first mutation-immune co-targeted therapy, the simultaneous combination of anti-PD-L1 with
BRAFV600MUT and MEK inhibitors (so-called “triplet” therapy) has been approved for patients with BRAFV600MUT
melanoma. However, the data on this triplet appear mixed, with other trials not meeting key endpoints,
suggesting that simultaneous combination is not optimal. Our recent work in syngeneic murine melanoma
models showed uniformly, across tumor models of distinct driver mutations and cancer histologies, that a
regimen of 1-week anti-PD-1/L1 (± anti-CTLA-4) pretreatment augments the efficacy of triplet therapy by
enhancing MAPKi durability and dramatically suppressing melanoma brain metastasis. The improved therapy
efficacy resulted from the promotion of pro-inflammatory polarization of tumor-associated macrophages and the
elicitation of robust T cell clonal expansion and clonotypic convergence within the tumor-immune
microenvironment (TIME) induced by the anti-PD-1/L1 lead-in. This is consistent with observations in the clinical
trial data that prior immunotherapy before MAPKi is associated with improved progression-free survival. These
results highlight the vital role of the sequence/timing of each therapy component in the rational design of
combination therapies and also point to the need for a mechanistic understanding of the early-stage impact of
each combinatorial therapy component on the TIME.
However, the design of such sequential combination therapy trials is challenging because of the sheer number
of variables (sequence order, dosing, and timing) to be tested. The level of complexity calls for a predictive
framework to significantly reduce the parameter space and inform the identification of effective sequential
immunotherapy-targeted inhibitor combinations. Herein, we hypothesize that a spatiotemporal, multi-omics
analysis of early-stage (few days) monotherapy-induced changes in the TIME can provide deep insights
for greatly simplifying the design of immunotherapy-targeted inhibitor sequential combination trials. The
goal of Project 1 is to provide a data set that can be mined to inform the design of effective sequential combination
regimens. We will leverage state-of-the-art, spatial multi-omics tissue profiling tools to build a spatiotemporal
“movie” of the evolving TIME in established syngeneic melanoma tumor models, and their associated brain
metastases, after treatment with each of the combinatorial therapy components. The resultant spatiotemporal
multi-omic data will be analyzed to extract a number of highly informative TIME features from which agent-based
models (Project 2) for predicting effective sequential combination regimens can be constructed. Retrospective
studies of clinical tumor biopsies are proposed to validate the model findings.
项目 1 总结/摘要
将免疫疗法与其他治疗方案(特别是靶向治疗)相结合是一个高度活跃的领域
旨在提高抗肿瘤疗效并将治疗益处惠及更多患者或
作为第一个突变免疫联合靶向治疗,抗PD-L1与肿瘤类型同时联合。
BRAFV600MUT 和 MEK 抑制剂(所谓的“三联”疗法)已被批准用于 BRAFV600MUT 患者
然而,这个三联体的数据似乎好坏参半,其他试验未达到关键终点,
表明同时组合并不是最佳的。
模型一致显示,在不同驱动突变和癌症组织学的肿瘤模型中,
1 周抗 PD-1/L1(± 抗 CTLA-4)预处理方案可通过以下方式增强三联疗法的疗效:
增强 MAPKi 持久性并显着抑制黑色素瘤脑转移。
功效是由于促进肿瘤相关巨噬细胞的促炎极化和
引发肿瘤免疫内稳健的 T 细胞克隆扩增和克隆型趋同
抗PD-1/L1导入诱导的微环境(TIME)这与临床观察结果一致。
试验数据表明,MAPKi 之前的免疫治疗与改善无进展生存期相关。
结果强调了每个治疗成分的顺序/时机在合理设计中的重要作用
联合疗法,还指出需要从机制上理解早期影响
时间上的每个组合治疗成分。
然而,由于数量庞大,此类序贯联合治疗试验的设计具有挑战性。
待测试的变量(顺序、剂量和时间)的复杂程度需要预测。
框架显着减少参数空间并告知有效序列的识别
在此,我们急于开发一种时空多组学的抑制剂组合。
分析早期(几天)单一疗法引起的 TIME 变化可以提供深入的见解
大大简化了免疫治疗靶向抑制剂序贯组合试验的设计。
项目 1 的目标是提供一个可以挖掘的数据集,为有效顺序组合的设计提供信息
我们将利用最先进的空间多组学组织分析工具来构建时空模型。
已建立的同基因黑色素瘤肿瘤模型及其相关大脑中时间演变的“电影”
使用每种组合治疗成分治疗后的转移。
将分析多组学数据,以提取许多信息丰富的 TIME 特征,从中基于代理的
可以构建预测有效序贯联合治疗方案的模型(项目 2)。
建议对临床肿瘤活检进行研究以验证模型结果。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
James R. Heath其他文献
Protein Catalyzed Capture (PCC) Agents for Antigen Targeting.
用于抗原靶向的蛋白质催化捕获 (PCC) 试剂。
- DOI:
- 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
M. Idso;B. Lai;Heather D Agnew;James R. Heath - 通讯作者:
James R. Heath
Are Changes in MAPK/ERK Necessary or Sufficient for Entrainment in Chick Pineal Cells?
MAPK/ERK 的变化对于鸡松果体细胞的夹带是必要的还是充分的?
- DOI:
10.1523/jneurosci.23-31-10021.2003 - 发表时间:
2003-11-05 - 期刊:
- 影响因子:0
- 作者:
G. Yadav;M. Straume;James R. Heath;M. Zatz - 通讯作者:
M. Zatz
Non-viral precision T cell receptor replacement for personalized cell therapy
用于个性化细胞治疗的非病毒精准 T 细胞受体替代
- DOI:
- 发表时间:
2022 - 期刊:
- 影响因子:64.8
- 作者:
Susan P. Foy;Kyle Jacoby;D. Bota;T. Hunter;Zheng Pan;E. Stawiski;Yangfang Ma;William Lu;Songming Peng;Cliff Wang;Benjamin T. K. Yuen;Olivier Dalmas;Katharine Heeringa;B. Sennino;A. Conroy;Michael T. Bethune;Ines Mende;W. White;M. Kukreja;Swetha Gunturu;Emily Humphrey;Adeel Hussaini;Duo An;A. Litterman;B. Quach;Alphonsus H. C. Ng;Yue Lu;Chad Smith;Katie M. Campbell;Daniel Anaya;Lindsey M. Skrdlant;Eva Huang;Ventura F. Mendoza;Jyoti Mathur;L. Dengler;B. Purandare;R. Moot;Michael C Yi;R. Funke;A. Sibley;Todd Stallings;D. Oh;B. Chmielowski;M. Abedi;Yuan Yuan;J. Sosman;Sylvia M. Lee;A. Schoenfeld;D. Baltimore;James R. Heath;A. Franzusoff;A. Ribas;A. Rao;S. Mandl - 通讯作者:
S. Mandl
Electrical addressing of confined quantum systems for quasiclassical computation and finite state logic machines.
用于准经典计算和有限状态逻辑机的受限量子系统的电寻址。
- DOI:
10.1073/pnas.0501623102 - 发表时间:
2005-04-19 - 期刊:
- 影响因子:11.1
- 作者:
F. Remacle;James R. Heath;R. Levine - 通讯作者:
R. Levine
Chick Pineal Melatonin Synthesis
小鸡松果体褪黑素合成
- DOI:
10.1046/j.1471-4159.2000.0742315.x - 发表时间:
2000-06-01 - 期刊:
- 影响因子:4.7
- 作者:
M. Zatz;J. Gastel;James R. Heath;D. C. Klein - 通讯作者:
D. C. Klein
James R. Heath的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('James R. Heath', 18)}}的其他基金
Spatiotemporal Tumor Analytics for Guiding Sequential Targeted-Inhibitor: Immunotherapy Combinations (ST-Analytics)
用于指导序贯靶向抑制剂的时空肿瘤分析:免疫治疗组合(ST-Analytics)
- 批准号:
10526101 - 财政年份:2022
- 资助金额:
$ 82.5万 - 项目类别:
Data-driven Patient-Specific Agent Based Models of Metastatic Melanoma for Immunotherapy Response Prediction
用于免疫治疗反应预测的数据驱动的基于患者特异性药物的转移性黑色素瘤模型
- 批准号:
10831325 - 财政年份:2022
- 资助金额:
$ 82.5万 - 项目类别:
PROJECT 1: TIME-Based Spatiotemporal Cancer Immunograms Predictive for Immunotherapy-Targeted Therapy Sequential Combinations
项目 1:基于时间的时空癌症免疫图预测免疫治疗靶向治疗顺序组合
- 批准号:
10907268 - 财政年份:2022
- 资助金额:
$ 82.5万 - 项目类别:
Spatiotemporal Tumor Analytics for Guiding Sequential Targeted-Inhibitor: Immunotherapy Combinations (ST-Analytics)
用于指导序贯靶向抑制剂的时空肿瘤分析:免疫治疗组合(ST-Analytics)
- 批准号:
10708901 - 财政年份:2022
- 资助金额:
$ 82.5万 - 项目类别:
PROJECT 1: TIME-Based Spatiotemporal Cancer Immunograms Predictive for Immunotherapy-Targeted Therapy Sequential Combinations
项目 1:基于时间的时空癌症免疫图预测免疫治疗靶向治疗顺序组合
- 批准号:
10708924 - 财政年份:2022
- 资助金额:
$ 82.5万 - 项目类别:
Nano and biomolecular engineered technologies for neoantigen-specific T cell capture and characterization
用于新抗原特异性 T 细胞捕获和表征的纳米和生物分子工程技术
- 批准号:
10297588 - 财政年份:2021
- 资助金额:
$ 82.5万 - 项目类别:
Nano and biomolecular engineered technologies for neoantigen-specific T cell capture and characterization
用于新抗原特异性 T 细胞捕获和表征的纳米和生物分子工程技术
- 批准号:
10489832 - 财政年份:2021
- 资助金额:
$ 82.5万 - 项目类别:
Nano and biomolecular engineered technologies for neoantigen-specific T cell capture and characterization
用于新抗原特异性 T 细胞捕获和表征的纳米和生物分子工程技术
- 批准号:
10673935 - 财政年份:2021
- 资助金额:
$ 82.5万 - 项目类别:
相似海外基金
Next generation T cell therapies for mutant KRAS solid tumors
针对突变 KRAS 实体瘤的下一代 T 细胞疗法
- 批准号:
10731929 - 财政年份:2023
- 资助金额:
$ 82.5万 - 项目类别:
Engineering T Cell Adoptive Therapy for Glioblastoma
胶质母细胞瘤的工程 T 细胞过继疗法
- 批准号:
10752995 - 财政年份:2023
- 资助金额:
$ 82.5万 - 项目类别:
Macrophage-Mediated Delivery of Acoustically Propelled Nanoparticles for Sensitizing Immunologically Cold Tumors
巨噬细胞介导的声学推进纳米颗粒的递送用于敏化免疫冷肿瘤
- 批准号:
10512775 - 财政年份:2022
- 资助金额:
$ 82.5万 - 项目类别:
Development of a novel lymphocyte engineering approach for treatment of vitiligo
开发治疗白癜风的新型淋巴细胞工程方法
- 批准号:
10640098 - 财政年份:2022
- 资助金额:
$ 82.5万 - 项目类别:
Macrophage-Mediated Delivery of Acoustically Propelled Nanoparticles for Sensitizing Immunologically Cold Tumors
巨噬细胞介导的声学推进纳米颗粒的递送用于敏化免疫冷肿瘤
- 批准号:
10646371 - 财政年份:2022
- 资助金额:
$ 82.5万 - 项目类别: