Mobile phone-based deep learning algorithm for oral lesion screening in low-resource settings

基于手机的深度学习算法,用于资源匮乏环境下的口腔病变筛查

基本信息

  • 批准号:
    10526857
  • 负责人:
  • 金额:
    $ 20.55万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-06-07 至 2025-05-31
  • 项目状态:
    未结题

项目摘要

Two-thirds of oral and oropharyngeal squamous cell carcinomas (OSCCs) occur in low- and middle-income countries (LMICs), with 5-year survival rates of only 10-40%. The poor survival rate in LMICs is due to late diagnosis and treatment. Thus, it is imperative to detect potentially malignant lesions early and expeditiously. To meet the need for oral cancer screening in low resource settings (LRS), we will develop and validate a low- cost mobile phone-based imaging device powered by computer vision and deep learning image classification algorithms to guide patient triage. We are a multi-institutional team comprising of optical imaging and machine learning engineers and oral/head-neck oncologists, at the University of Arizona, Memorial Sloan Kettering Cancer Center and Tata Memorial Hospital (TMH, Mumbai, as the LMIC setting). In preliminary studies, our team has developed and tested the hardware: a dual-mode polarized white light imaging (pWLI) and autofluorescence imaging (AFI) mobile device. Non-expert field healthcare workers read images with (low) sensitivity of 60%. Additionally, a preliminary deep learning classification algorithm, implemented on a cloud- based server computer, demonstrated improved sensitivity of 79% and specificity of 82%. Our proposal is to address the key remaining hurdle – improving the reading skills of non-expert field healthcare workers – locally in LRS in LMICs, which do not have internet and cloud connectivity. We will develop and validate the required software: machine learning (deep learning) image classification algorithm on a mobile phone, to guide field healthcare workers in triage of oral lesions into benign (patients can go home) versus suspicious (patients referred to clinician for follow up care). The innovations will be in design and integration of computer vision (image mosaicking) and deep learning classification algorithms on a mobile phone-based imaging device, to provide high accuracy and consistency for screening. Novel aspects will be in (i) the deep learning approach for dual-mode image contrast: pWLI contrast for color and texture of normal features (increasing specificity) and AFI contrast associated with malignancy (increasing sensitivity) and in (ii) engineering of the algorithm for use on mobile devices, via teacher student learning-based knowledge distillation techniques The clinical innovation will be first-in-humans testing for improvements in sensitivity and specificity relative to that of purely visual interpretation, for routine use by non-expert field healthcare workers in LRS. In the R21 project, we will develop a mobile deep learning-based oral lesion screening and patient triage algorithm and demonstrate feasibility in a cancer care setting (TMH’s main hospital in Mumbai). In the R33 project, we will optimize the algorithm, test and validate in a large study in a field setting at TMH’s regional clinic in Varanasi. Successful completion of this project will deliver urgently needed capabilities to field healthcare workers in LRS, for early detection and triage of oral potentially malignant lesions, improving early oral cancer detection rates, allowing timely referral to specialists, improving treatment outcomes and improving quality of life for patients in LMICs.
三分之二的口腔和口咽鳞状细胞癌 (OSCC) 发生在低收入和中等收入国家 中低收入国家 (LMIC) 的 5 年生存率仅为 10-40% 中低收入国家 (LMIC) 的生存率较低是由于晚期。 因此,尽早发现潜在的恶性病变并进行治疗至关重要。 为了满足低资源环境(LRS)中口腔癌筛查的需求,我们将开发并验证低资源环境下的口腔癌筛查方法。 基于计算机视觉和深度学习图像分类的成本手机成像设备 我们是一个由光学成像和技术人员组成的多机构团队。 亚利桑那大学纪念斯隆管理学院的机器学习工程师和口腔/头颈肿瘤学家 凯特林癌症中心和塔塔纪念医院(孟买 TMH,作为 LMIC 机构)。 研究中,我们的团队开发并测试了硬件:双模偏振白光成像(pWLI) 和自发荧光成像 (AFI) 移动设备 非专业现场医护人员读取图像(低)。 此外,在云上实现了初步的深度学习分类算法。 基于服务器计算机的结果表明,灵敏度提高了 79%,特异性提高了 82%。 解决剩下的关键障碍——提高非专业现场医护人员的阅读技能——本地 在没有互联网和云连接的中低收入国家的 LRS 中,我们将开发和验证所需的功能。 软件:手机上的机器学习(深度学习)图像分类算法,指导现场 医护人员将口腔病变分类为良性(患者可以回家)和可疑(患者 转介给临床医生进行后续护理)。创新将在于计算机视觉的设计和集成。 (图像镶嵌)和基于手机的成像设备上的深度学习算法分类,以 为筛选提供高精度和一致性的新颖之处在于(i)深度学习方法。 对于双模式图像对比度:正常特征的颜色和纹理的 pWLI 对比度(增加特异性) 和与恶性肿瘤相关的 AFI 对比(增加敏感性)以及 (ii) 算法的设计 通过教师学生学习的知识蒸馏技术在移动设备上使用 创新将是首次进行人体测试,以提高相对于纯粹的敏感性和特异性的测试 视觉解释,供 LRS 中的非专业现场医护人员日常使用。在 R21 项目中,我们将。 开发基于移动深度学习的口腔病变筛查和患者分诊算法并进行演示 癌症护理机构(TMH 位于孟买的主要医院)的可行性 在 R33 项目中,我们将优化 在瓦拉纳西 TMH 地区诊所的一项大型研究中进行了算法、测试和验证。 该项目的完成将为 LRS 的现场医护人员提供急需的能力,以便尽早 口腔潜在恶性病变的检测和分类,提高早期口腔癌的检出率,使 及时转诊至专家,改善中低收入国家患者的治疗结果和生活质量。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Pankaj Chaturvedi其他文献

Pankaj Chaturvedi的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Pankaj Chaturvedi', 18)}}的其他基金

Reflectance confocal microscopy-optical coherence tomography (RCM-OCT) imaging of oral lesions: Toward an affordable device and approach for developing countries
口腔病变的反射共焦显微镜-光学相干断层扫描 (RCM-OCT) 成像:为发展中国家提供负担得起的设备和方法
  • 批准号:
    10735695
  • 财政年份:
    2023
  • 资助金额:
    $ 20.55万
  • 项目类别:
Analytical capacity building for the study of tobacco carcinogen exposures in India
印度烟草致癌物暴露研究的分析能力建设
  • 批准号:
    10206316
  • 财政年份:
    2017
  • 资助金额:
    $ 20.55万
  • 项目类别:
Analytical capacity building for the study of tobacco carcinogen exposures in India
印度烟草致癌物暴露研究的分析能力建设
  • 批准号:
    9547949
  • 财政年份:
    2017
  • 资助金额:
    $ 20.55万
  • 项目类别:
Analytical capacity building for the study of tobacco carcinogen exposures in India
印度烟草致癌物暴露研究的分析能力建设
  • 批准号:
    9371941
  • 财政年份:
    2017
  • 资助金额:
    $ 20.55万
  • 项目类别:

相似国自然基金

本体驱动的地址数据空间语义建模与地址匹配方法
  • 批准号:
    41901325
  • 批准年份:
    2019
  • 资助金额:
    22.0 万元
  • 项目类别:
    青年科学基金项目
时空序列驱动的神经形态视觉目标识别算法研究
  • 批准号:
    61906126
  • 批准年份:
    2019
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
  • 批准号:
    61802432
  • 批准年份:
    2018
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
  • 批准号:
    61802133
  • 批准年份:
    2018
  • 资助金额:
    23.0 万元
  • 项目类别:
    青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
  • 批准号:
    61872252
  • 批准年份:
    2018
  • 资助金额:
    64.0 万元
  • 项目类别:
    面上项目

相似海外基金

Nonlinear performance analysis and prediction for robust low dose lung CT
鲁棒低剂量肺部 CT 的非线性性能分析和预测
  • 批准号:
    10684375
  • 财政年份:
    2022
  • 资助金额:
    $ 20.55万
  • 项目类别:
Nonlinear performance analysis and prediction for robust low dose lung CT
鲁棒低剂量肺部 CT 的非线性性能分析和预测
  • 批准号:
    10570160
  • 财政年份:
    2022
  • 资助金额:
    $ 20.55万
  • 项目类别:
Highly-sensitive, rapid and low cost plasmonic assay platform for Lyme disease diagnosis
用于莱姆病诊断的高灵敏度、快速且低成本的等离子体检测平台
  • 批准号:
    10546574
  • 财政年份:
    2022
  • 资助金额:
    $ 20.55万
  • 项目类别:
Nonlinear performance analysis and prediction for robust low dose lung CT
鲁棒低剂量肺部 CT 的非线性性能分析和预测
  • 批准号:
    10321949
  • 财政年份:
    2021
  • 资助金额:
    $ 20.55万
  • 项目类别:
IOPSxV: Novel Visualization for Non-Fluoroscopic 3D Image Guidance for Peripheral Vascular Interventions.
IOPSxV:用于外周血管干预的非透视 3D 图像指导的新型可视化。
  • 批准号:
    9908555
  • 财政年份:
    2020
  • 资助金额:
    $ 20.55万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了