Novel Biomarkers for Post-Liver Transplant NASH Fibrosis

肝移植后 NASH 纤维化的新型生物标志物

基本信息

  • 批准号:
    10518842
  • 负责人:
  • 金额:
    $ 71.25万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-07-18 至 2026-05-31
  • 项目状态:
    未结题

项目摘要

Our overarching goal is to develop minimally invasive approaches to better predict outcome and novel mechanisms in post-liver transplant (LT) NASH fibrosis. Although LT is an effective therapy for NAFLD cirrhosis, the risk of post-transplant NAFLD is alarmingly high, particularly for recurrent non-alcoholic steatohepatitis (NASH) with an incidence of up to 70% at 5 years. Effective approaches to predict risk hamper the treatment and prevention of post-LT NASH fibrosis. The hepatic extracellular matrix (ECM) responds dynamically to organ injury and ECM turnover increases; we propose to take advantage of this to develop new biomarkers for post- LT NASH fibrosis. The peptidome, low molecular weight peptides in biologic fluids, includes not only synthesized peptides, but fragments of degraded proteins (i.e., ‘degradome’). We hypothesize that the ECM degradome in plasma will yield new biomarkers to predict outcome and mechanisms in post-LT NASH fibrosis. We will test this hypothesis via the following Specific Aims: 1). To identify key changes in the peptidome of post- LT NASH with fibrosis.. Unbiased peptidomics and multivariate analyses will identify degradomic features independently linked to prognosis. Protease activity that could produce significantly changed peptides will be predicted using Proteasix. We will also determine the mechanistic role of ECM turnover in the in parallel established NAFLD/NASH. 2) To develop clinically-actionable predictive models of NASH and fibrosis post-LT. Whereas we expect the results of Aim 1 to establish that the peptidome profile in patients correlates with overall outcome, biomarkers alone are often insufficient to accurately predict individual patient outcome. We will therefore employ machine learning methods like probabilistic graphical models (PGMs) over mixed data types to integrate peptidomic and individual patient clinical data, into a single probabilistic graphical framework. The resulting graphs will then be used to infer causal interactions between variables, select informative biomarkers that will more specifically predict the outcome, and gain new mechanistic insight into the biology of post-LT NASH (hypothesis generation). 3) To validate the use of the peptidome as a predictive tool for determining post-LT NASH fibrosis. Using a large prospectively-designed patient cohort with established outcomes, we will test the ability of the algorithms and biomarkers generated in this study to predict outcome. The successful completion of the proposed work will produce significant results at various levels: (1) Biomarker discovery: we will identify biomarkers and conditional biomarkers. (2) Mechanistic understanding of post-LT NASH fibrosis: our models will generate hypotheses about the interactions between variables at different scales (molecular, individual) that will provide insights on the proteins that are involved and potentially new druggable targets. (3) Algorithm development: through this project we will extend our mixed data graph learning algorithms to include time-course variables to be validated using a large prospective LT cohort.
我们的首要目标是开发微创方法,以更好地预测结果和新颖的方法 肝移植后 (LT) NASH 纤维化的机制 尽管 LT 是治疗 NAFLD 肝硬化的有效方法, 移植后 NAFLD 的风险非常高,尤其是复发性非酒精性脂肪性肝炎 (NASH),5 年发病率高达 70%。预测阻碍治疗的风险的有效方法。 以及预防 LT 后 NASH 纤维化 肝细胞外基质 (ECM) 对器官做出动态反应。 损伤和 ECM 营业额增加;我们建议利用这一点来开发新的生物标记物 LT NASH 纤维化 肽组(生物体液中的低分子量肽)不仅包括合成的肽。 我们发现 ECM 降解组是肽,而是降解蛋白质的片段(即“降解组”)。 血浆中的蛋白质将产生新的生物标志物来预测 LT 后 NASH 纤维化的结果和机制。 将通过以下具体目标来检验这一假设: 1). 确定后肽组的关键变化。 LT NASH 伴纤维化。无偏肽组学和多变量分析将鉴定降解组学特征 可能产生显着变化的肽的蛋白酶活性将与预后独立相关。 我们还将同时确定 ECM 更新的机制作用。 建立了 NAFLD/NASH 2) 开发 NASH 和 LT 后纤维化的临床可行的预测模型。 特别是,我们期望目标 1 的结果能够确定患者的肽组谱与整体相关。 的结果,仅生物标志物通常不足以准确预测个体患者的结果。 因此,在混合数据类型上采用概率图形模型 (PGM) 等机器学习方法 将肽组学和个体患者临床数据整合到单个概率图形框架中。 然后生成的图表将用于推断变量之间的因果相互作用,选择信息丰富的生物标志物 这将更具体地预测结果,并获得对 LT 后 NASH 生物学的新机制见解 (假设生成)3) 验证肽组作为确定 LT 后的预测工具的用途。 NASH 纤维化。我们将使用一个大型前瞻性设计的具有确定结果的患者队列来测试 本研究中生成的算法和生物标志物预测结果的能力。 拟议工作的一部分将在各个层面产生重大成果:(1)生物标志物发现:我们将确定 (2) LT 后 NASH 纤维化的机制理解:我们的模型将 生成关于不同尺度(分子、个体)变量之间相互作用的假设,这些假设将 (3)算法 开发:通过这个项目,我们将扩展我们的混合数据图学习算法以包括时间进程 使用大型前瞻性 LT 队列来验证变量。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Gavin E Arteel其他文献

Gavin E Arteel的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Gavin E Arteel', 18)}}的其他基金

The role of matrix-bound microvesicles in alcohol-related liver disease
基质结合微泡在酒精相关性肝病中的作用
  • 批准号:
    10582800
  • 财政年份:
    2023
  • 资助金额:
    $ 71.25万
  • 项目类别:
Novel Biomarkers for Post-Liver Transplant NASH Fibrosis
肝移植后 NASH 纤维化的新型生物标志物
  • 批准号:
    10667657
  • 财政年份:
    2022
  • 资助金额:
    $ 71.25万
  • 项目类别:
Biomarkers of Alcoholic Hepatitis
酒精性肝炎的生物标志物
  • 批准号:
    10631081
  • 财政年份:
    2020
  • 资助金额:
    $ 71.25万
  • 项目类别:
Biomarkers of Alcoholic Hepatitis
酒精性肝炎的生物标志物
  • 批准号:
    10407997
  • 财政年份:
    2020
  • 资助金额:
    $ 71.25万
  • 项目类别:
Pilot and Feasibility
试点与可行性
  • 批准号:
    10372014
  • 财政年份:
    2019
  • 资助金额:
    $ 71.25万
  • 项目类别:
Pilot and Feasibility
试点与可行性
  • 批准号:
    10117250
  • 财政年份:
    2019
  • 资助金额:
    $ 71.25万
  • 项目类别:
Pilot and Feasibility
试点与可行性
  • 批准号:
    10589770
  • 财政年份:
    2019
  • 资助金额:
    $ 71.25万
  • 项目类别:
Liver-enriched Transcription Factors as Prognostic Markers and Therapeutic Targets in Alcoholic Hepatitis
肝脏富集转录因子作为酒精性肝炎的预后标志物和治疗靶点
  • 批准号:
    10428560
  • 财政年份:
    2018
  • 资助金额:
    $ 71.25万
  • 项目类别:
Pilot Project Core
试点项目核心
  • 批准号:
    8978010
  • 财政年份:
    2016
  • 资助金额:
    $ 71.25万
  • 项目类别:
Role of ECM and inflammatory remodeling in alcohol-induced liver and lung damage-diversity supplement
ECM和炎症重塑在酒精性肝肺损伤中的作用-多样性补充
  • 批准号:
    9121282
  • 财政年份:
    2015
  • 资助金额:
    $ 71.25万
  • 项目类别:

相似国自然基金

基于深度强化学习的约束多目标群智算法及多区域热电调度应用
  • 批准号:
    62303197
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
面向二氧化碳封存的高可扩展时空并行区域分解算法及其大规模应用
  • 批准号:
    12371366
  • 批准年份:
    2023
  • 资助金额:
    43.5 万元
  • 项目类别:
    面上项目
无界区域中非局部Klein-Gordon-Schrödinger方程的保结构算法研究
  • 批准号:
    12301508
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
面向多区域单元化生产线协同调度问题的自动算法设计研究
  • 批准号:
    62303204
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
集装箱港口装卸运输区域基于碳配额碳交易的运营优化模型和算法研究
  • 批准号:
    72271152
  • 批准年份:
    2022
  • 资助金额:
    44 万元
  • 项目类别:
    面上项目

相似海外基金

Incorporating residential histories into assessment of cancer risk in a predominantly low-income and racially diverse population
将居住史纳入以低收入和种族多元化为主的人群的癌症风险评估中
  • 批准号:
    10735164
  • 财政年份:
    2023
  • 资助金额:
    $ 71.25万
  • 项目类别:
A computational model for prediction of morphology, patterning, and strength in bone regeneration
用于预测骨再生形态、图案和强度的计算模型
  • 批准号:
    10727940
  • 财政年份:
    2023
  • 资助金额:
    $ 71.25万
  • 项目类别:
MASS: Muscle and disease in postmenopausal women
MASS:绝经后妇女的肌肉和疾病
  • 批准号:
    10736293
  • 财政年份:
    2023
  • 资助金额:
    $ 71.25万
  • 项目类别:
In vivo Evaluation of Lymph Nodes Using Quantitative Ultrasound
使用定量超声对淋巴结进行体内评估
  • 批准号:
    10737152
  • 财政年份:
    2023
  • 资助金额:
    $ 71.25万
  • 项目类别:
A Novel Algorithm to Identify People with Undiagnosed Alzheimer's Disease and Related Dementias
一种识别未确诊阿尔茨海默病和相关痴呆症患者的新算法
  • 批准号:
    10696912
  • 财政年份:
    2023
  • 资助金额:
    $ 71.25万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了