Improving the robustness of neuroimaging through exploitation of variability in processing pipelines
通过利用处理流程的可变性来提高神经影像的鲁棒性
基本信息
- 批准号:10516830
- 负责人:
- 金额:$ 150.4万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-08-01 至 2025-07-31
- 项目状态:未结题
- 来源:
- 关键词:AddressAdolescenceAdolescentAdoptedAdoptionAgreementArchitectureBRAIN initiativeBase of the BrainBiological MarkersBrainBrain imagingChildhoodCognitiveCollectionCommunitiesComputer softwareConsensusDataData SetDevelopmentEnsureFunctional Magnetic Resonance ImagingGoalsGraphHealthHeterogeneityIndividualLeadLiteratureMachine LearningMapsMeasuresMethodsModelingPhenotypePopulationPositioning AttributeReportingReproducibilityReproducibility of ResultsSamplingScientistSignal TransductionSiteSoftware ToolsSourceTechniquesTestingTrainingUnited States National Institutes of HealthValidationVariantWorkanalysis pipelinebasebiomarker discoveryclinically relevantcognitive developmentconnectomedata analysis pipelinedesignfitnessflexibilityimprovedmachine learning classifiermachine learning frameworkneuroimagingopen datapredictive markerpreventsegmentation algorithmsuccesstoolvector
项目摘要
ABSTRACT
Reproducible findings are essential to scientific advancement. Unfortunately, when fields lack consensus
standards for methods, or their implementations, reproducibility tends to be more of an ideal than a reality. Such
is the case for functional neuroimaging analysis, where there is a sprawling and heterogeneous analytic space
from which scientists can select tools, construct processing pipelines, and draw interpretations from their results.
Recent demonstrations of disappointing levels of reproducibility for findings across labs, even when using the
same datasets, have made the urgent need to overcome analytic heterogeneity clear. Differences in processing
steps, parameters, and their software implementation have all been shown to bias results, limiting their
comparability with one another. One solution that has emerged in the literature is the adoption of highly
prescribed pipelines, such as the fMRIPrep and HCP Pipelines. While successful in restricting variability, the
lack of ground truths or consensus processing components and parameters prevents such efforts from being a
desirable long-term solution. An alternative strategy, which our team has successfully deployed to achieve robust
results in the face of numerical instabilities, is to develop tools that ensemble results across a space of pipeline
configurations (i.e., a range of components and parameters). Based on our prior work, we predict that such a
strategy would not only improve the robustness of findings, but minimize biases arising from single pipeline
selections that compromise the success of biomarker discovery efforts. We address this challenge by proposing
a framework for characterizing, summarizing, and minimizing analytic biases in experimental findings. Building
on prior work implementing independently developed pipelines (e.g., ABCD-HCP, CCS, fMRIPrep) within a
common platform (i.e., the Configurable Pipeline for the Analysis of Connectomes; C-PAC), we will
systematically vary their components to generate a broad space of pipelines (n=192). We will quantify the
variability in full-brain functional connectivity matrices generated across configurations, and identify both the
contribution of individual components (e.g., segmentation, spatial normalization) and the relationships between
pipelines (Aim 1). We will construct robust estimates of functional connectivity by sampling the variability
observed across pipelines (Aim 2), and improve the generalizability of brain-phenotype relationships through the
extension of machine learning ensembling techniques (Aim 3). We will increase the accessibility of our approach
by sampling the pipeline configuration space to identify a minimal set of representative pipelines. The strength
of these techniques will be demonstrated by identifying generalizable brain-based biomarkers of cognitive and
psychiatric wellness using the NIH ABCD Study dataset. This project will lead a shift in neuroimaging towards
the capture and inclusion of dominant sources of variability in functional neuroimaging, and in doing so, help to
carry functional neuroimaging out of the reproducibility crisis into an era of robustness. Consistent with the values
of open science, all contributions will be made publicly and freely available.
抽象的
可重复的发现对于科学进步至关重要。不幸的是,当领域缺乏共识时
方法或其实施的标准、可重复性往往更多的是一种理想而不是现实。这样的
功能神经影像分析就是这种情况,其中存在庞大且异构的分析空间
科学家可以从中选择工具、构建处理管道并从结果中得出解释。
最近的研究表明,即使在使用
相同的数据集,已经表明克服分析异质性的迫切需要。加工差异
步骤、参数及其软件实现都已被证明会产生偏差结果,限制了它们的
彼此之间的可比性。文献中出现的一种解决方案是采用高度
规定的管道,例如 fMRIPrep 和 HCP Pipelines。虽然成功地限制了变异性,
缺乏基本事实或共识处理组件和参数会阻碍此类努力成为
理想的长期解决方案。我们的团队已成功部署另一种策略,以实现稳健的目标
面对数值不稳定的结果,是开发在管道空间中集成结果的工具
配置(即一系列组件和参数)。根据我们之前的工作,我们预测这样的
策略不仅可以提高研究结果的稳健性,还可以最大限度地减少单一管道产生的偏差
影响生物标志物发现工作成功的选择。我们通过提议来应对这一挑战
用于表征、总结和最小化实验结果中的分析偏差的框架。建筑
之前在一个项目内实施独立开发的管道(例如 ABCD-HCP、CCS、fMRIPrep)的工作
通用平台(即用于连接组分析的可配置管道;C-PAC),我们将
系统地改变其组件以生成广阔的管道空间 (n=192)。我们将量化
跨配置生成的全脑功能连接矩阵的可变性,并识别
各个组成部分(例如分割、空间标准化)的贡献以及之间的关系
管道(目标 1)。我们将通过对变异性进行采样来构建功能连接的稳健估计
跨管道观察(目标 2),并通过
机器学习集成技术的扩展(目标 3)。我们将提高我们方法的可及性
通过对管道配置空间进行采样来识别一组最小的代表性管道。实力
这些技术将通过识别可推广的基于大脑的认知和认知生物标志物来证明。
使用 NIH ABCD 研究数据集的精神健康。该项目将引领神经影像学向
捕获并纳入功能神经影像中变异性的主要来源,这样做有助于
将功能神经影像技术从可重复性危机带入稳健时代。与价值观一致
开放科学的所有贡献都将公开且免费提供。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Gregory Kiar其他文献
Gregory Kiar的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
青春期发育对青少年心理行为发展的影响及生理机制
- 批准号:32300888
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基因与同伴环境对青少年冒险行为的调控及其神经机制
- 批准号:31800938
- 批准年份:2018
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
家庭关系对青少年网络游戏成瘾的影响:行为与认知神经机制
- 批准号:31800937
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
青春期甲基苯丙胺暴露对小鼠脑发育的影响以及作用机制研究
- 批准号:81772034
- 批准年份:2017
- 资助金额:60.0 万元
- 项目类别:面上项目
青春期可卡因滥用对成年时前额皮质内侧部锥体神经元功能的影响:GABA能突触传递的调控机制研究
- 批准号:81571303
- 批准年份:2015
- 资助金额:57.0 万元
- 项目类别:面上项目
相似海外基金
Executive functions in urban Hispanic/Latino youth: exposure to mixture of arsenic and pesticides during childhood
城市西班牙裔/拉丁裔青年的执行功能:童年时期接触砷和农药的混合物
- 批准号:
10751106 - 财政年份:2024
- 资助金额:
$ 150.4万 - 项目类别:
Identification of Prospective Predictors of Alcohol Initiation During Early Adolescence
青春期早期饮酒的前瞻性预测因素的鉴定
- 批准号:
10823917 - 财政年份:2024
- 资助金额:
$ 150.4万 - 项目类别:
Early Life Stress Induced Mechanisms of Cardiovascular Disease Risk and Resilience
生命早期压力诱发心血管疾病风险和恢复力的机制
- 批准号:
10555121 - 财政年份:2023
- 资助金额:
$ 150.4万 - 项目类别:
Neurodevelopment of executive function, appetite regulation, and obesity in children and adolescents
儿童和青少年执行功能、食欲调节和肥胖的神经发育
- 批准号:
10643633 - 财政年份:2023
- 资助金额:
$ 150.4万 - 项目类别: