Identification of Multi-modal Imaging Biomarkers for Early Prediction of MCI-AD Conversion via Multigraph Representation
通过多图表示识别多模态成像生物标志物以早期预测 MCI-AD 转换
基本信息
- 批准号:10510971
- 负责人:
- 金额:$ 32.92万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-08-01 至 2024-07-31
- 项目状态:已结题
- 来源:
- 关键词:Alzheimer&aposs DiseaseAlzheimer&aposs disease diagnosisAlzheimer&aposs disease patientAlzheimer’s disease biomarkerBackBig DataBiologicalBiological MarkersBrainBrain regionClinicalClinical TrialsCognitionCognitiveDataData AnalysesData AnalyticsData CollectionData SetDatabasesDementiaDevelopmentDiagnosisDiagnostic ImagingDiffusion Magnetic Resonance ImagingDiseaseDisease ProgressionEarly DiagnosisEarly identificationElderlyFunctional Magnetic Resonance ImagingGoalsGraphImageImpaired cognitionIndividualInformaticsInterventionLabelLeadLearningLiteratureMagnetic Resonance ImagingMapsMemoryMethodologyMethodsModalityModelingMultimodal ImagingNetwork-basedNeurologicPathologicPatientsPatternPerformancePhysiologicalPopulationPositron-Emission TomographyProgressive DiseaseReportingSample SizeSamplingSchemeSeriesSiteSpatial DistributionSurfaceTechniquesTestingTherapeutic InterventionTimeTrainingValidationaging brainalgorithm developmentbasecohortconvolutional neural networkdeep learningdiagnostic accuracydiagnostic valueearly detection biomarkerseffectiveness evaluationgraph neural networkimaging biomarkerimaging modalityimprovedlearning strategymachine learning methodmild cognitive impairmentmortalitymultimodal neuroimagingmultimodalityneurodegenerative dementianeuroimagingnovelpredictive modelingrisk stratificationsymptom treatmenttool
项目摘要
Summary
Alzheimer’s disease (AD) is the most common form of neurodegenerative dementia and has an
astounding impact at individual and societal levels. As the early-stage cognitive degeneration,
mild cognitive impairment (MCI) has a high chance to convert to AD. Effective and early
prediction of such conversion is of great importance for risk stratification, patient management,
and possible symptomatic treatments. Identification of an MCI-AD conversion end point is also
important for clinical trials for better evaluating the effectiveness of therapeutic interventions.
Recent studies have shown that multi-modalities neuroimaging can offer a more comprehensive
characterization for the MCI-AD conversion, revealing the physiologic underpinning of the
clinical states, and ultimately result in higher prediction accuracy based on the multi-modal
imaging biomarker. Advancement in deep learning, especially deep Graph Convolutional
Networks, has provided us with powerful tools in modeling the multi-modal neuroimaging data
on the brain networks. However, despite the high prediction accuracy of AD in literature, multi-
modal imaging diagnostic still lacks generalizability and robustness in dealing with data from
other sites/populations due to the combined effect of relatively smaller sample sizes and
potential bias in the sample labels.
In this proposal, we will investigate the interaction among structural, functional, and
proteinopathies networks in MCI and AD patients via a contrastive learning-based, multigraph
representation framework on the multi-modal neuroimaging data of MRI, fMRI and PET
modalities. The proposed framework will be used to identify and evaluate a multi-modal image
biomarker for the AD conversion in MCI population from a multi-site dataset. By analyzing the
spatial and populational patterns of the identified multi-modal image biomarker, we will be able
to discover novel neuroscientific and biological mechanisms of the MCI-AD conversion.
概括
阿尔茨海默氏病 (AD) 是神经退行性痴呆的最常见形式,具有
由于早期认知退化,对个人和社会层面产生了惊人的影响。
轻度认知障碍(MCI)有很高的机会有效且早期转化为 AD。
预测这种转化对于风险分层、患者管理、
以及可能的对症治疗的确定。
对于临床试验以更好地评估治疗干预措施的有效性非常重要。
最近的研究表明,多模态神经影像学可以提供更全面的
MCI-AD 转换的表征,揭示了 MCI-AD 转换的生理基础
临床状态,最终基于多模态获得更高的预测精度
成像生物标记物的进展,特别是深度图卷积。
网络为我们提供了多模态神经影像数据建模的强大工具
然而,尽管文献中 AD 的预测精度很高,但多
模态成像诊断在处理数据时仍然缺乏普遍性和鲁棒性
由于样本量相对较小的综合影响,其他地点/人群
样本标签中的潜在偏差。
在本提案中,我们将研究结构、功能和功能之间的相互作用
通过基于对比学习的多图研究 MCI 和 AD 患者的蛋白质病网络
MRI、fMRI 和 PET 多模态神经影像数据的表示框架
所提出的框架将用于识别和评估多模态图像。
通过分析来自多站点数据集的 MCI 人群 AD 转换的生物标志物。
已识别的多模态图像生物标志物的空间和人口统计模式,我们将能够
发现 MCI-AD 转化的新神经科学和生物学机制。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Xiang Li其他文献
Life Cycle Resource Consumption of Automotive Power Seats
汽车电动座椅生命周期资源消耗
- DOI:
- 发表时间:
2014 - 期刊:
- 影响因子:0
- 作者:
Yanping Yang;Xiang Li;Haibo Dong;Ruibin Bai - 通讯作者:
Ruibin Bai
Xiang Li的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Xiang Li', 18)}}的其他基金
Enhancer of zeste homolog 2-mediated epigenetic activation of acid sphingomyelinase in endothelial dysfunction during obesity
肥胖期间内皮功能障碍中 zeste 同源物 2 介导的酸性鞘磷脂酶表观遗传激活的增强剂
- 批准号:
10664949 - 财政年份:2020
- 资助金额:
$ 32.92万 - 项目类别:
Enhancer of zeste homolog 2-mediated epigenetic activation of acid sphingomyelinase in endothelial dysfunction during obesity
肥胖期间内皮功能障碍中 zeste 同源物 2 介导的酸性鞘磷脂酶表观遗传激活的增强剂
- 批准号:
10664949 - 财政年份:2020
- 资助金额:
$ 32.92万 - 项目类别:
Enhancer of zeste homolog 2-mediated epigenetic activation of acid sphingomyelinase in endothelial dysfunction during obesity
肥胖期间内皮功能障碍中 zeste 同源物 2 介导的酸性鞘磷脂酶表观遗传激活的增强剂
- 批准号:
10200139 - 财政年份:2020
- 资助金额:
$ 32.92万 - 项目类别:
Enhancer of zeste homolog 2-mediated epigenetic activation of acid sphingomyelinase in endothelial dysfunction during obesity
肥胖期间内皮功能障碍中 zeste 同源物 2 介导的酸性鞘磷脂酶表观遗传激活的增强剂
- 批准号:
10443790 - 财政年份:2020
- 资助金额:
$ 32.92万 - 项目类别:
相似国自然基金
基于神经退行性疾病前瞻性队列的新烟碱类杀虫剂暴露对阿尔茨海默病的影响及作用机制研究
- 批准号:
- 批准年份:2022
- 资助金额:53 万元
- 项目类别:面上项目
基于miRNA介导ceRNA网络调控作用的防治阿尔茨海默病及认知障碍相关疾病药物的发现研究
- 批准号:
- 批准年份:2020
- 资助金额:55 万元
- 项目类别:面上项目
LMTK1调控核内体转运介导阿尔茨海默病神经元Reserve机制研究
- 批准号:81903703
- 批准年份:2019
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
MBP酶切L1CAM介导的线粒体自噬在阿尔茨海默病中的作用和机制
- 批准号:81901296
- 批准年份:2019
- 资助金额:20.5 万元
- 项目类别:青年科学基金项目
基于自组装多肽纳米探针检测蛋白标志物用于阿尔茨海默病精准诊断的研究
- 批准号:31900984
- 批准年份:2019
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Uncovering Mechanisms of Racial Inequalities in ADRD: Psychosocial Risk and Resilience Factors for White Matter Integrity
揭示 ADRD 中种族不平等的机制:心理社会风险和白质完整性的弹性因素
- 批准号:
10676358 - 财政年份:2024
- 资助金额:
$ 32.92万 - 项目类别:
The Proactive and Reactive Neuromechanics of Instability in Aging and Dementia with Lewy Bodies
衰老和路易体痴呆中不稳定的主动和反应神经力学
- 批准号:
10749539 - 财政年份:2024
- 资助金额:
$ 32.92万 - 项目类别:
The Influence of Lifetime Occupational Experience on Cognitive Trajectories Among Mexican Older Adults
终生职业经历对墨西哥老年人认知轨迹的影响
- 批准号:
10748606 - 财政年份:2024
- 资助金额:
$ 32.92万 - 项目类别:
Small Molecule Degraders of Tryptophan 2,3-Dioxygenase Enzyme (TDO) as Novel Treatments for Neurodegenerative Disease
色氨酸 2,3-双加氧酶 (TDO) 的小分子降解剂作为神经退行性疾病的新疗法
- 批准号:
10752555 - 财政年份:2024
- 资助金额:
$ 32.92万 - 项目类别: