Linking Histone Modifications, HSF-1 activity and Lifespan
连接组蛋白修饰、HSF-1 活性和寿命
基本信息
- 批准号:10508860
- 负责人:
- 金额:$ 22.62万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-08-15 至 2024-06-30
- 项目状态:已结题
- 来源:
- 关键词:AdultAffectAgeAgingAnimal ModelBiologicalBiological AssayBiological ProcessBiologyBiology of AgingBiosensorCaenorhabditis elegansCellsClimactericCommunitiesComplexDataDepositionDevelopmentEmbryoEnvironmentEpigenetic ProcessEukaryotaEventFutureGene ExpressionGeneticGoalsHSF1Heat shock factorHeat-Shock ResponseHistonesImaging DeviceImaging TechniquesIndividualIndividual DifferencesIndividualityLarvaLeadLifeLinkLongevityMaternal AgeMolecularMonitorMothersMotionOocytesOrganismOutcome StudyOxidation-ReductionOxidesPhysiologicalPlayPopulationReactive Oxygen SpeciesResearchResistanceRoleSorting - Cell MovementSourceStressTestingTimeTissuesVariantWorkbaseexperimental studyfascinatefollow-upgenetic makeuphealthspanheat shock transcription factorhistone methylationhistone modificationimprintinsightmemberneuronal cell bodyoffspringoxidationsensortool
项目摘要
One of the most fascinating questions in the aging field is: Why do some organisms live longer than others?
That lifespan variations are not solely based on the genetic makeup or the environment becomes clear when
one studies isogenic organisms, such as Caenorhabditis elegans. Even when carefully age-synchronized and
cultivated under uniform environmental conditions, the lifespan of individuals within a population of C. elegans
varies several-fold. What causes this lifespan variation and when is the clock set? Our previous work
demonstrated that individuals of a synchronized C. elegans population show high inter-individual differences in
their levels of endogenous reactive oxygen species (ROS) during early development. Sorting of larval worms
according to their endogenous redox states (i.e., oxidized vs. reduced) followed by longitudinal physiological
and cell-biological assays revealed that larval worms that are more oxidized have significantly increased stress
resistance, a more reduced redox state during adulthood and a longer lifespan. We found that this increase in
stress resistance and lifespan is due to the ROS-dependent transient inactivation of Set2, a conserved
member of the COMPASS complex, the complex which is responsible for the trimethylation of H3K4 (i.e.,
H3K4me3) in eukaryotes. To our knowledge, these studies not only provide the first demonstration of a redox-
regulated histone methylation event in biology, but are the first to give mechanistic insights into how early life
events can increase longevity. We will now investigate the mechanisms by which a decrease in H3K4me3
levels during development leads to increased stress resistance and extended lifespan. Our proposed studies
are guided by preliminary results, which demonstrate a hitherto unknown link between the global reduction in
H3K4me3 marks, and the increase in the levels and activity of the heat shock factor HSF1, one of the most
conserved longevity factors known. We will exploit genetic tools in C. elegans to directly monitor the effects of
H3K4me3 depletion on HSF1 synthesis, stability and turnover, and deplete H3K4me3 levels at defined time
points and in specific tissues to reveal when, how and in what tissues the individuality in lifespan arises. To
determine where developmental ROS variations come from, we will follow up on exciting preliminary data
suggesting that the redox states in developing C. elegans larvae (and hence their lifespan) are inversely
related to the age and redox state of the mother. These studies are likely to shed new mechanistic insights
into the Lansing Effect, a long recognized but so far mostly descriptive phenomenon that describes the
negative relationship between the maternal age and the lifespan of the offspring. The results of these studies
will provide fundamentally new insights into the underlying mechanisms that lead to early life redox variations,
and the subsequent events that delay aging.
衰老领域最令人着迷的问题之一是:为什么有些生物体比其他生物体寿命更长?
寿命差异不仅仅取决于基因构成或环境,这一点在以下情况下就变得很清楚:
一项研究研究同基因生物,例如秀丽隐杆线虫。即使仔细地进行年龄同步和
在统一的环境条件下培养,秀丽隐杆线虫种群中个体的寿命
变化数倍。是什么导致了这种寿命差异?时钟何时设置?我们之前的工作
证明同步的秀丽隐杆线虫种群中的个体在
他们在早期发育过程中内源性活性氧(ROS)的水平。幼虫的分类
根据其内源性氧化还原状态(即氧化与还原),然后是纵向生理学
细胞生物学分析表明,氧化程度更高的幼虫所承受的压力显着增加
抵抗力、成年期氧化还原状态更加降低以及寿命更长。我们发现这种增加
抗应激性和寿命是由于 ROS 依赖性的 Set2 瞬时失活所致,Set2 是一种保守的
COMPASS 复合体的成员,该复合体负责 H3K4 的三甲基化(即
H3K4me3) 在真核生物中。据我们所知,这些研究不仅首次证明了氧化还原-
在生物学中调控组蛋白甲基化事件,但他们是第一个对早期生命如何发生机制提供见解的人
事件可以延长寿命。我们现在将研究 H3K4me3 减少的机制
发育过程中的水平会导致抗压能力增强并延长寿命。我们提出的研究
以初步结果为指导,初步结果表明,全球死亡率下降之间存在迄今未知的联系。
H3K4me3 标记,以及热休克因子 HSF1 水平和活性的增加,HSF1 是最重要的因子之一。
已知保守的长寿因素。我们将利用秀丽隐杆线虫的遗传工具来直接监测
H3K4me3 消耗对 HSF1 合成、稳定性和周转有影响,并在规定时间消耗 H3K4me3 水平
点和特定组织中,以揭示生命周期中的个性何时、如何以及在哪些组织中出现。到
确定发育性 ROS 变异的来源,我们将跟进令人兴奋的初步数据
表明发育中的线虫幼虫(及其寿命)的氧化还原状态成反比
与母亲的年龄和氧化还原状态有关。这些研究可能会带来新的机制见解
兰辛效应是一种长期被认可但迄今为止主要是描述性的现象,它描述了
母亲年龄与后代寿命呈负相关。这些研究的结果
将为导致早期生命氧化还原变化的潜在机制提供全新的见解,
以及随后发生的延缓衰老的事件。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ursula H. Jakob其他文献
Ursula H. Jakob的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ursula H. Jakob', 18)}}的其他基金
Linking Histone Modifications, HSF-1 activity and Lifespan
连接组蛋白修饰、HSF-1 活性和寿命
- 批准号:
10683390 - 财政年份:2022
- 资助金额:
$ 22.62万 - 项目类别:
Role of Molecular Chaperones in Stress Response and Disease
分子伴侣在应激反应和疾病中的作用
- 批准号:
10159934 - 财政年份:2017
- 资助金额:
$ 22.62万 - 项目类别:
Role of Molecular Chaperones in Stress Response and Disease
分子伴侣在应激反应和疾病中的作用
- 批准号:
9474648 - 财政年份:2017
- 资助金额:
$ 22.62万 - 项目类别:
Role of Molecular Chaperones in Stress Response and Disease
分子伴侣在应激反应和疾病中的作用
- 批准号:
9925819 - 财政年份:2017
- 资助金额:
$ 22.62万 - 项目类别:
Polyphosphate - A Novel Member of the Proteostasis Network
多磷酸盐 - 蛋白质稳态网络的新成员
- 批准号:
9118242 - 财政年份:2015
- 资助金额:
$ 22.62万 - 项目类别:
Polyphosphate - A Novel Member of the Proteostasis Network
多磷酸盐 - 蛋白质稳态网络的新成员
- 批准号:
8987288 - 财政年份:2015
- 资助金额:
$ 22.62万 - 项目类别:
2015 Stress Proteins in Growth, Development and Disease GRC
2015 生长、发育和疾病 GRC 中的应激蛋白
- 批准号:
8976890 - 财政年份:2015
- 资助金额:
$ 22.62万 - 项目类别:
Investigation of developmental peroxide generation as an important lifespan-deter
发育性过氧化物生成作为重要的寿命阻止因素的研究
- 批准号:
8716042 - 财政年份:2014
- 资助金额:
$ 22.62万 - 项目类别:
相似国自然基金
多氯联苯与机体交互作用对生物学年龄的影响及在衰老中的作用机制
- 批准号:82373667
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
基于年龄和空间的非随机混合对性传播感染影响的建模与研究
- 批准号:12301629
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
母传抗体水平和疫苗初种年龄对儿童麻疹特异性抗体动态变化的影响
- 批准号:82304205
- 批准年份:2023
- 资助金额:20 万元
- 项目类别:青年科学基金项目
运动状态下代谢率的年龄变化特征及对人体热舒适的影响研究
- 批准号:
- 批准年份:2022
- 资助金额:54 万元
- 项目类别:面上项目
基于堆叠式集成学习探索人居环境对生物学年龄的影响
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
The Proactive and Reactive Neuromechanics of Instability in Aging and Dementia with Lewy Bodies
衰老和路易体痴呆中不稳定的主动和反应神经力学
- 批准号:
10749539 - 财政年份:2024
- 资助金额:
$ 22.62万 - 项目类别:
The Influence of Lifetime Occupational Experience on Cognitive Trajectories Among Mexican Older Adults
终生职业经历对墨西哥老年人认知轨迹的影响
- 批准号:
10748606 - 财政年份:2024
- 资助金额:
$ 22.62万 - 项目类别:
Identifying and testing a tailored strategy to achieve equity in blood pressure control in PACT
确定并测试量身定制的策略,以在 PACT 中实现血压控制的公平性
- 批准号:
10538513 - 财政年份:2023
- 资助金额:
$ 22.62万 - 项目类别:
Early Life Stress Induced Reprogramming of Vascular Function by the Endothelium and Macrophage Systems
生命早期的压力诱导内皮细胞和巨噬细胞系统对血管功能进行重新编程
- 批准号:
10555125 - 财政年份:2023
- 资助金额:
$ 22.62万 - 项目类别: