The interplay between cell envelope protein homeostasis and antibiotic resistance in Gram-negative bacteria
革兰氏阴性菌细胞包膜蛋白稳态与抗生素耐药性之间的相互作用
基本信息
- 批准号:10514634
- 负责人:
- 金额:$ 38.95万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-11-01 至 2026-10-31
- 项目状态:未结题
- 来源:
- 关键词:Acinetobacter baumanniiAntibiotic ResistanceAntibiotic TherapyAntibioticsAntimicrobial ResistanceBacterial Antibiotic ResistanceBacterial InfectionsBiochemicalBiochemical PathwayBiochemistryBiogenesisCRISPR interferenceCell Membrane PermeabilityCessation of lifeChemicalsClinicalComplexCytoplasmDataDevelopmentDisease modelEnzymesEpidemiologyEscherichia coliEvolutionFoundationsFutureGenetic TranscriptionGoalsGram-Negative BacteriaHealthcare SystemsHomeImpairmentInfectionInvestigationKlebsiella pneumoniaeKnowledgeLaboratoriesLightLinkMechanical StressMediatingMicrobiologyModelingModern MedicineMulti-Drug ResistanceMusNatural regenerationNatureOrganismPathway interactionsPerformancePermeabilityProcessProteinsProteomeProteomicsPseudomonas aeruginosaResearchResistanceRoleStressSystemTestingantimicrobialbacterial geneticsbeta-Lactamasecatalystcell envelopechronic infectionclinically relevantcolistin resistancecomparativedisulfide bondefflux pumpfunctional disabilityglobal healthholistic approachhuman diseaseinnovationmultidrug-resistant Pseudomonas aeruginosamutantnext generationnovelnovel therapeuticspathogenpathogenic bacteriaperiplasmprogramsprotein foldingproteostasisresistance mechanism
项目摘要
PROJECT SUMMARY / ABSTRACT
Gram-negative bacteria are uniquely equipped to defeat antibiotics. Their outermost layer, the cell envelope, is
a natural permeability barrier that contains an array of resistance proteins capable of neutralizing most existing
antimicrobials. As a result, its presence creates a major obstacle both for the treatment of resistant infections
and the development of new antibiotics.
The cell envelope is also home to numerous conserved pathways that safeguard the integrity of its proteome.
Despite the central role of these systems in maintaining protein homeostasis, their interaction with resistance
proteins localizing in the cell envelope has not been examined. We hypothesized that the activity of cell envelope
folding catalysts may be important for the function of resistance determinants, and we tested this hypothesis on
a key proteostasis player, the disulfide bond formation system. We discovered that the oxidative-protein-folding
activity of this pathway is essential for the function of some of the most epidemiologically relevant and clinically
challenging resistance proteins, namely β-lactamases, colistin resistance enzymes, and efflux pumps. Guided
by strong preliminary data obtained from model laboratory strains and from clinical isolates, we propose an in-
depth investigation of the role of cell envelope proteostasis systems in antibiotic resistance. We will use a
combination of bacterial genetics, microbiology, biochemistry, proteomics, experimental evolution, and human
disease modeling to pursue three specific aims: 1) Identify the components of the resistome that rely on oxidative
protein folding, by assessing the requirement for disulfide bond formation on hundreds of clinically important
resistance proteins. 2) Evaluate the impact of oxidative protein folding on resistant infections, by testing our
biochemical findings in clinical isolates and in a relevant murine chronic infection model. 3) Explore the role of
other cell envelope folding catalysts in antibiotic resistance, by probing their function in multidrug-resistant clinical
strains of pathogenic bacteria and validating our results in model laboratory strains.
We expect that our holistic approach, spanning multiple resistance determinants and folding catalysts, will break
new ground in our understanding of the role of cell envelope proteostasis in resistance. This knowledge will be
applicable to many high-priority Gram-negative pathogens and, in the long term, may inspire novel broad-acting
strategies for overcoming antibiotic resistance.
项目概要/摘要
革兰氏阴性细菌具有独特的能力来抵抗抗生素,它们的最外层,即细胞膜,是。
天然渗透屏障,包含一系列能够中和大多数现有的耐药蛋白
因此,它的存在给耐药性感染的治疗带来了重大障碍。
以及新抗生素的开发。
细胞膜也是许多保守途径的所在地,可保护其蛋白质组的完整性。
尽管这些系统在维持蛋白质稳态方面发挥着核心作用,但它们与耐药性的相互作用
尚未检查定位于细胞被膜的蛋白质。我们注意到细胞被膜的活性。
折叠催化剂可能对耐药性决定因素的功能很重要,我们在以下方面测试了这一假设:
我们发现氧化蛋白质折叠是蛋白质稳态的关键参与者。
该通路的活性对于一些与流行病学和临床最相关的功能至关重要
具有挑战性的耐药蛋白,即β-内酰胺酶、粘菌素耐药酶和外排泵。
通过从模型实验室菌株和临床分离株获得的强有力的初步数据,我们提出了一个in-
深入研究细胞包膜蛋白质稳态系统在抗生素耐药性中的作用。
细菌遗传学、微生物学、生物化学、蛋白质组学、实验进化和人类的结合
疾病建模以实现三个具体目标:1)识别依赖于氧化的抗性组成分
蛋白质折叠,通过评估数百个临床上重要的二硫键形成的要求
2) 通过测试我们的方法来评估氧化蛋白折叠对耐药感染的影响。
临床分离株和相关小鼠慢性感染模型中的生化结果 3) 探索其作用。
其他细胞膜折叠催化剂在抗生素耐药性中的作用,通过探索它们在多重耐药临床中的功能
致病菌菌株并验证我们在模型实验室菌株中的结果。
我们预计,涵盖多个阻力决定因素和折叠催化剂的整体方法将突破
这一知识将为我们理解细胞包膜蛋白稳态在抵抗中的作用提供新的基础。
适用于许多高度优先的革兰氏阴性病原体,从长远来看,可能会激发新的广泛作用
克服抗生素耐药性的策略。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Despoina Mavridou其他文献
Despoina Mavridou的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Despoina Mavridou', 18)}}的其他基金
The interplay between cell envelope protein homeostasis and antibiotic resistance in Gram-negative bacteria
革兰氏阴性菌细胞包膜蛋白稳态与抗生素耐药性之间的相互作用
- 批准号:
10366424 - 财政年份:2021
- 资助金额:
$ 38.95万 - 项目类别:
相似国自然基金
多环芳烃影响大肠杆菌抗生素耐药性进化的分子机制
- 批准号:32301424
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
靶向铜绿假单胞菌FpvA蛋白的铁载体偶联抗生素克服细菌耐药性及作用机制研究
- 批准号:82304313
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
乙醇脱氢酶AdhB介导肺炎链球菌抗生素耐药性的机制研究
- 批准号:32300154
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
鸭肠道菌群抗生素耐药性分布及替抗噬菌体内溶素鉴定研究
- 批准号:32360830
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
消毒剂-抗生素循环压力下鲍曼不动杆菌耐药性演变及其作用机制
- 批准号:82273586
- 批准年份:2022
- 资助金额:52 万元
- 项目类别:面上项目
相似海外基金
Novel antimicrobials to combat Gram-negative bacteria
对抗革兰氏阴性菌的新型抗菌剂
- 批准号:
10888456 - 财政年份:2023
- 资助金额:
$ 38.95万 - 项目类别:
Developing a novel class of peptide antibiotics targeting carbapenem-resistant Gram-negative organisms
开发一类针对碳青霉烯类耐药革兰氏阴性生物的新型肽抗生素
- 批准号:
10674131 - 财政年份:2023
- 资助金额:
$ 38.95万 - 项目类别:
Host Directed Orynotide for MDR Gram Negative Bacterial Infections
宿主定向 Orynotide 用于治疗耐多药革兰氏阴性细菌感染
- 批准号:
10674221 - 财政年份:2023
- 资助金额:
$ 38.95万 - 项目类别:
Dual-Wavelength Blue Light Irradiation for Improved Treatment of Staphylococcus aureus Infections
双波长蓝光照射改善金黄色葡萄球菌感染的治疗
- 批准号:
10724476 - 财政年份:2023
- 资助金额:
$ 38.95万 - 项目类别:
Inhibitors of adaptive efflux mediated resistance in Acinetobacter baumannii
鲍曼不动杆菌适应性外排介导的耐药性抑制剂
- 批准号:
10625029 - 财政年份:2023
- 资助金额:
$ 38.95万 - 项目类别: