Examining Susceptibility and Resistance Phenotypes to Enhance Understanding of the Genetic Basis of Major Coronary Artery Disease in Type 1 Diabetes
检查易感性和耐药表型以增强对 1 型糖尿病主要冠状动脉疾病遗传基础的了解
基本信息
- 批准号:10506443
- 负责人:
- 金额:$ 64.88万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-07-27 至 2027-06-30
- 项目状态:未结题
- 来源:
- 关键词:17 year oldAddressAge-YearsBiologicalBiological MarkersBlood PressureBlood VesselsCandidate Disease GeneCardiovascular systemCessation of lifeChildhoodClinical DataComplications of Diabetes MellitusCoronaryCoronary ArteriosclerosisCouplingDNA MethylationDataDevelopmentDiabetes MellitusDiseaseDisease PathwayDisease ResistanceDisease susceptibilityElectrocardiogramEpidemiologyEtiologyEventFutureGenesGeneticGenetic CodeGenetic Predisposition to DiseaseGenetic studyGoalsHeterogeneityImmune Response GenesImmune responseInflammationInflammatoryInflammatory ResponseInsulin-Dependent Diabetes MellitusInterventionIschemiaKidney DiseasesLipidsMeasurementMeasuresMediatingMediationMendelian randomizationMyocardial InfarctionNatural HistoryNetwork-basedOutcomePathway interactionsPersonsPhenotypePopulationPredispositionPrevalenceProteinsProteomicsReportingResistanceRiskRisk FactorsSample SizeSamplingSpecimenSubgroupTestingVariantVascular Diseasesbaseburden of illnesscase controlclinical riskcohortdesigndisease phenotypedisorder riskfollow-upgene discoverygenetic variantgenome sequencinggenome wide association studyhigh riskinsulin dependent diabetes mellitus onsetmultiple omicsnovelnovel markernovel therapeutic interventionpreventprospectiveresponse biomarkerrisk varianttargeted biomarkertrendwhole genome
项目摘要
ABSTRACT
People with type 1 diabetes (T1D) are at dramatically increased risk of developing coronary artery disease
(CAD), but the reasons for this excess risk compared to the background population are not fully understood.
There is a critical need to identify people at risk of major CAD events early in their T1D natural history and to
develop new therapeutic interventions to reduce CAD risk and burden. While prior studies have examined
associations between genetic variants and CAD in T1D, a lack of strong candidate genes remains. This lack is
at least partially due to the fact that case-control designs using low-precision phenotypes to maximize sample
size and which disregard within-phenotype heterogeneity have been the most common approach to studying
the genetic basis of vascular complications in T1D to date. Likewise, while it is well established that
inflammatory and immune response biomarkers are associated with CAD risk in general and that levels of
these biomarkers are elevated in T1D, the association between such markers and CAD has not been
comprehensively studied in T1D. Inflammatory and immune response biomarkers are intermediate phenotypes
that hold potential to help uncover novel pathways to CAD in T1D and may be promising treatment targets.
Thus, our hypotheses are that unidentified genetic variants associated with CAD susceptibility or resistance
exist and that networks of inflammatory and immune response biomarkers are associated with CAD and may
mediate inflammatory/immune response gene-CAD associations. Our approach will be to first refine the CAD
phenotype definition to one that better reflects the genetic etiology of CAD susceptibility and resistance in T1D.
Specifically, studying highly specific “discordant” risk factor-CAD phenotype subgroups may help uncover
novel pathways to CAD development in T1D. Our approach will increase precision of both genetic sequencing
(by using whole genome sequencing) and CAD phenotype definitions. We will also measure a comprehensive
proteomic panel of 92 targeted biomarkers and derive networks of related markers to assess their associations
with CAD and the degree to which those networks mediate associations between CAD and genes involved in
inflammation/immune response. We will utilize data and specimens from the Epidemiology of Diabetes
Complications (EDC) study, a well-characterized T1D cohort with >30 years of follow-up and deep
phenotyping, allowing us to comprehensively examine many intermediate phenotypes (i.e., traditional risk
factors and novel biomarkers) in gene-to-CAD pathways. Furthermore, we will replicate the findings from this
discovery analyses in external cohorts. With this approach we expect to uncover evidence of novel pathways
that account for a proportion of unexplained CAD risk in T1D and point to new intervention targets.
抽象的
1 型糖尿病 (T1D) 患者患冠状动脉疾病的风险显着增加
(CAD),但与背景人群相比,这种超额风险的原因尚不完全清楚。
迫切需要在 T1D 自然史早期识别出有重大 CAD 事件风险的人群,并
开发新的治疗干预措施以降低 CAD 风险和负担。
尽管 T1D 基因变异与 CAD 之间存在关联,但仍缺乏强有力的候选基因。
至少部分是由于病例对照设计使用低精度表型来最大化样本
大小和忽视表型异质性是最常见的研究方法
迄今为止,T1D 血管并发症的遗传基础也同样如此,但这一点已得到充分证实。
炎症和免疫反应生物标志物总体上与 CAD 风险相关,并且炎症和免疫反应生物标志物的水平
这些生物标志物在 T1D 中升高,但这些标志物与 CAD 之间的关联尚未确定
在 T1D 中进行全面研究的炎症和免疫反应生物标志物是中间表型。
它们有可能帮助发现 T1D 中 CAD 的新途径,并可能成为有希望的治疗目标。
因此,我们的假设是,未识别的遗传变异与 CAD 易感性或抵抗力相关
存在,并且炎症和免疫反应生物标志物网络与 CAD 相关,并且可能
介导炎症/免疫反应基因-CAD 关联我们的方法是首先完善 CAD。
表型定义能够更好地反映 1 型糖尿病 (T1D) 中 CAD 易感性和耐药性的遗传病因。
具体来说,研究高度特异性的“不一致”风险因素 - CAD 表型亚组可能有助于揭示
T1D 中 CAD 开发的新途径将提高基因测序的精度。
(通过使用全基因组测序)和 CAD 表型定义。
由 92 个目标生物标志物组成的蛋白质组组,并衍生相关标志物网络以评估其关联
CAD 以及这些网络介导 CAD 与相关基因之间关联的程度
我们将利用糖尿病流行病学的数据和标本。
并发症 (EDC) 研究,一项经过 30 年以上随访和深入研究的特征明确的 T1D 队列
表型分析,使我们能够全面检查许多中间表型(即传统的风险
此外,我们将复制此研究结果。
通过这种方法,我们期望发现新途径的证据。
这解释了 1 型糖尿病中无法解释的 CAD 风险的一部分,并指出了新的干预目标。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Rachel Grace Miller其他文献
Rachel Grace Miller的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Rachel Grace Miller', 18)}}的其他基金
Examining Susceptibility and Resistance Phenotypes to Enhance Understanding of the Genetic Basis of Major Coronary Artery Disease in Type 1 Diabetes
检查易感性和耐药表型以增强对 1 型糖尿病主要冠状动脉疾病遗传基础的了解
- 批准号:
10672463 - 财政年份:2022
- 资助金额:
$ 64.88万 - 项目类别:
相似国自然基金
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
相似海外基金
Examining Susceptibility and Resistance Phenotypes to Enhance Understanding of the Genetic Basis of Major Coronary Artery Disease in Type 1 Diabetes
检查易感性和耐药表型以增强对 1 型糖尿病主要冠状动脉疾病遗传基础的了解
- 批准号:
10672463 - 财政年份:2022
- 资助金额:
$ 64.88万 - 项目类别:
Incorporating cardiovascular risk assessment into adolescent and young adult visits to improve cardiovascular health
将心血管风险评估纳入青少年和年轻人的就诊中,以改善心血管健康
- 批准号:
10375349 - 财政年份:2021
- 资助金额:
$ 64.88万 - 项目类别:
Socio-spatial Networks and Tuberculosis Infection in Youth in Rural Uganda
乌干达农村青年的社会空间网络与结核病感染
- 批准号:
10515642 - 财政年份:2020
- 资助金额:
$ 64.88万 - 项目类别:
Socio-spatial Networks and Tuberculosis Infection in Youth in Rural Uganda
乌干达农村青年的社会空间网络与结核病感染
- 批准号:
10303055 - 财政年份:2020
- 资助金额:
$ 64.88万 - 项目类别:
Implementation of Inpatient Postpartum Human Papillomavirus Immunization
住院病人产后人乳头瘤病毒免疫的实施
- 批准号:
10187528 - 财政年份:2018
- 资助金额:
$ 64.88万 - 项目类别: