Catalysis and inhibition of chitin synthesis from pathogenic fungi
病原真菌几丁质合成的催化和抑制
基本信息
- 批准号:10501171
- 负责人:
- 金额:$ 63.91万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-06-07 至 2027-05-31
- 项目状态:未结题
- 来源:
- 关键词:Active SitesAdverse effectsAgricultureAnabolismAntifungal AgentsAntifungal AntibioticsBiological AssayCandidaCandida albicansCatalysisCell WallCell divisionCellular StructuresChitinChitin SynthaseClinicalCoccidioidomycosisCodeComplexCryoelectron MicroscopyDependenceDevelopmentDrug resistanceEnzyme Inhibitor DrugsEnzyme InteractionEnzymesEvaluationExhibitsFDA approvedFoundationsFungal ComponentsFutureGenesGenomeGoalsHumanImmunocompromised HostIndustrial fungicideKineticsKnock-outKnowledgeLengthMethodsMolecularMolecular ConformationMycosesNucleosidesOligosaccharidesOrganismPhysiologyPolysaccharidesPredispositionPublic HealthReactionRegulationResearchResistanceResolutionStructureStructure-Activity RelationshipTestingTherapeuticToxic effectTravelVariantanalogbaseclinical developmentclinical investigationdivalent metaldrug sensitivityfungusglycosyltransferasein vivoinhibitorinsightnikkomycinnovelpathogenpathogenic fungusperiplasmprogramsresistance mechanismsynergismtranslational potential
项目摘要
Project Summary/Abstract
The available antifungal drugs against invasive fungal infections are limited due to the challenge in selectively
killing eukaryotic pathogens without harming humans. Chitin synthases (CHSs) represent one of few proven
targets whose inhibition provides highly selective antifungal effects without any detectable toxicity to humans.
CHSs are transmembrane processive glycosyltransferases (GTs) responsible for the biosynthesis of chitin, an
essential polysaccharide component of the fungal cell wall. Due to their essential function in fungal physiology,
CHSs are targeted by naturally occurring peptidyl nucleoside (PN) antifungal agents. PNs exhibit in vivo activities
against multiple endemic fungal pathogens without adverse effects on humans, and exhibit a strong synergy with
current FDA-approved antifungal drugs. However, their development has been slow because of only moderate
antifungal activities against more clinically prevalent fungal pathogens such as Candida albicans and the
absence of atomic-level understanding of CHS. Our long-term goal is to provide a comprehensive understanding
of CHS catalysis, regulation, and inhibition at the atomic level. The current application focuses on structural and
mechanistic studies of the catalysis and inhibition of C. albicans CHSs. C. albicans has four CHSs of which
CaCHS1 and CaCH2 require simultaneous inhibition for fungicidal effects. While existing PNs potently inhibit
CaCHS2, they are much weaker against CaCHS1 and thus exhibit only moderate antifungal activity against C.
albicans. The molecular mechanism behind the difference in PN potency between CaCHS1 and CaCH2 is
currently unknown. For the future development of CHS-targeting anti-candida agents, it is essential to
understand their structural and mechanistic differences for both catalysis and inhibition. As a preliminary study,
we heterologously expressed and purified catalytically active CaCHS1 and CaCHS2, and solved the cryo-EM
structures of CaCHS2 in the apo-, substrate-bound, and PN (nikkomycin Z and polyoxin D)-bound forms. We
also developed novel activity assays for the determination of chitin chain length and quantitation of both long
insoluble chitin and short soluble chito-oligosaccharides, and established a method for chemo-enzymatic
synthesis of nikkomycin analogs. Based on these developments, we propose to study the mechanism of chitin
formation and extrusion by CaCHS2 (Aim 1), the functional and structural basis of the lower susceptibility of
CaCHS1 to PNs as well as the synergy of using both CaCHS1 and CaCHS2 inhibitors (Aim 2), and the detailed
and systematic structure-activity relationships of PNs (Aim 3). For Aims 2 and 3, clinical isolates of C. albicans
and non-albicans candida strains will also be included for inhibitor testing, increasing the translational potential
of our research program. The proposed research is significant because it will provide the molecular basis for
future development of novel antifungals against a clinically unexploited target.
项目概要/摘要
由于选择性治疗的挑战,针对侵袭性真菌感染的可用抗真菌药物有限。
杀死真核病原体而不伤害人类。几丁质合酶 (CHS) 是少数经过验证的酶之一
其抑制作用可提供高度选择性的抗真菌作用,而对人类没有任何可检测到的毒性。
CHS 是跨膜进行性糖基转移酶 (GT),负责几丁质的生物合成,几丁质是一种
真菌细胞壁的必需多糖成分。由于它们在真菌生理学中的重要功能,
CHS 是天然存在的肽基核苷 (PN) 抗真菌剂的靶标。 PNs表现出体内活性
对抗多种地方性真菌病原体,对人类没有不良影响,并与
目前 FDA 批准的抗真菌药物。但由于其发展水平不高,发展缓慢。
针对临床上更常见的真菌病原体(例如白色念珠菌和
缺乏对 CHS 的原子级理解。我们的长期目标是提供全面的了解
CHS 在原子水平上的催化、调节和抑制。目前的应用主要集中在结构和
白色念珠菌 CHS 催化和抑制的机制研究。白色念珠菌有四个 CHS,其中
CaCHS1 和 CaCH2 需要同时抑制才能发挥杀菌作用。虽然现有的 PN 可以有效抑制
CaCHS2,它们对 CaCHS1 的作用要弱得多,因此对念珠菌仅表现出中等的抗真菌活性。
白色念珠菌。 CaCHS1 和 CaCH2 PN 效力差异背后的分子机制是
目前未知。对于未来开发针对 CHS 的抗念珠菌药物,至关重要的是
了解它们在催化和抑制方面的结构和机制差异。作为初步研究,
我们异源表达并纯化了具有催化活性的CaCHS1和CaCHS2,并解决了cryo-EM
CaCHS2 的载脂蛋白结合、底物结合和 PN(尼可霉素 Z 和多氧霉素 D)结合形式的结构。我们
还开发了新的活性测定法,用于测定几丁质链长度和长链的定量
不溶性甲壳素和短可溶性壳寡糖,并建立了化学酶法
尼可霉素类似物的合成。基于这些进展,我们建议研究甲壳素的作用机制
CaCHS2 的形成和挤出(目标 1),是较低敏感性的功能和结构基础
CaCHS1 与 PN 的结合以及使用 CaCHS1 和 CaCHS2 抑制剂的协同作用(目标 2),以及详细的
PNs 的系统结构-活性关系(目标 3)。对于目标 2 和 3,白色念珠菌的临床分离株
和非白色念珠菌菌株也将被纳入抑制剂测试,增加转化潜力
我们的研究计划。拟议的研究意义重大,因为它将提供分子基础
针对临床未开发靶点的新型抗真菌药物的未来开发。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Seok-Yong Lee其他文献
Seok-Yong Lee的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Seok-Yong Lee', 18)}}的其他基金
Catalysis and inhibition of chitin synthesis from pathogenic fungi
病原真菌几丁质合成的催化和抑制
- 批准号:
10640198 - 财政年份:2022
- 资助金额:
$ 63.91万 - 项目类别:
Molecular principles of anti-COVID-19 drug uptake by human nucleoside transporters
人类核苷转运蛋白摄取抗COVID-19药物的分子原理
- 批准号:
10703355 - 财政年份:2022
- 资助金额:
$ 63.91万 - 项目类别:
Molecular principles of anti-COVID-19 drug uptake by human nucleoside transporters
人类核苷转运蛋白摄取抗COVID-19药物的分子原理
- 批准号:
10348225 - 财政年份:2022
- 资助金额:
$ 63.91万 - 项目类别:
Structure, function, and pharmacology of neuronal membrane transport proteins
神经元膜转运蛋白的结构、功能和药理学
- 批准号:
10403716 - 财政年份:2021
- 资助金额:
$ 63.91万 - 项目类别:
Structural and Mechanistic Characterization of MraY Catalysis and Inhibition
MraY 催化和抑制的结构和机制表征
- 批准号:
9156353 - 财政年份:2017
- 资助金额:
$ 63.91万 - 项目类别:
Structure, function, and pharmacology of neuronal membrane transport proteins
神经元膜转运蛋白的结构、功能和药理学
- 批准号:
9761604 - 财政年份:2016
- 资助金额:
$ 63.91万 - 项目类别:
Structure, function, and pharmacology of neuronal membrane transport proteins
神经元膜转运蛋白的结构、功能和药理学
- 批准号:
9336001 - 财政年份:2016
- 资助金额:
$ 63.91万 - 项目类别:
Structure, function, and pharmacology of neuronal membrane transport proteins
神经元膜转运蛋白的结构、功能和药理学
- 批准号:
10472617 - 财政年份:2016
- 资助金额:
$ 63.91万 - 项目类别:
Structure, function, and pharmacology of neuronal membrane transport proteins
神经元膜转运蛋白的结构、功能和药理学
- 批准号:
10687812 - 财政年份:2016
- 资助金额:
$ 63.91万 - 项目类别:
Structure, function, and pharmacology of neuronal membrane transport proteins
神经元膜转运蛋白的结构、功能和药理学
- 批准号:
10245145 - 财政年份:2016
- 资助金额:
$ 63.91万 - 项目类别:
相似国自然基金
基于真实世界医疗大数据的中西药联用严重不良反应监测与评价关键方法研究
- 批准号:82274368
- 批准年份:2022
- 资助金额:52 万元
- 项目类别:面上项目
OR10G7错义突变激活NLRP3炎症小体致伊马替尼严重皮肤不良反应的机制研究
- 批准号:
- 批准年份:2022
- 资助金额:52 万元
- 项目类别:面上项目
基于隐狄利克雷分配模型的心血管系统药物不良反应主动监测研究
- 批准号:82273739
- 批准年份:2022
- 资助金额:52 万元
- 项目类别:面上项目
基于真实世界数据的创新药品上市后严重罕见不良反应评价关键方法研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
D.formicigenerans菌通过调控FoxP3-Treg影响PD-1抑制剂所致免疫相关不良反应的机制研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Microbiome Metabolite Valerobetaine: Mechanisms in Aging
微生物组代谢物戊甜菜碱:衰老机制
- 批准号:
10763615 - 财政年份:2023
- 资助金额:
$ 63.91万 - 项目类别:
ECHO in Agricultural Washington and Rural Environments (ECHO AWARE)
华盛顿农业和农村环境中的 ECHO (ECHO AWARE)
- 批准号:
10745817 - 财政年份:2023
- 资助金额:
$ 63.91万 - 项目类别:
Sensory Mechanisms of Cadmium-Induced Behavioral Disorders Across Generations
镉引起的几代人行为障碍的感觉机制
- 批准号:
10747559 - 财政年份:2023
- 资助金额:
$ 63.91万 - 项目类别:
Catalysis and inhibition of chitin synthesis from pathogenic fungi
病原真菌几丁质合成的催化和抑制
- 批准号:
10640198 - 财政年份:2022
- 资助金额:
$ 63.91万 - 项目类别:
Project 3: A Novel Simultaneous Multiparametric MRI Approach for the Quantitative Assessment of Non-alcoholic Fatty Liver Disease
项目 3:一种用于非酒精性脂肪肝定量评估的新型同步多参数 MRI 方法
- 批准号:
10594473 - 财政年份:2022
- 资助金额:
$ 63.91万 - 项目类别: