Molecular mechanisms of lithium action on kinases
锂对激酶作用的分子机制
基本信息
- 批准号:10500972
- 负责人:
- 金额:$ 32.51万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-17 至 2026-08-31
- 项目状态:未结题
- 来源:
- 关键词:AddressAdvocateAffectAffinityBase PairingBenchmarkingBindingBinding ProteinsBiochemicalBioinformaticsBiologicalBiophysicsBipolar DisorderBloodCatalytic DomainChemicalsChemistryCyclic AMP-Dependent Protein KinasesDementiaDevelopmentDoseEnzymesEquilibriumExposure toFoundationsFree EnergyFutureGenesGlycogen Synthase Kinase 3GoalsGrowthHumanIn VitroIndividualIonsLithiumMapsMedicalMethodsMolecularMutagenesisMutationNatural SelectionsOutcomePathway interactionsPersonsPhenotypePhosphoric Monoester HydrolasesPhosphotransferasesPhysiologicalPhysiological ProcessesPredispositionProcessProtein KinaseProteinsProtocols documentationQuantum MechanicsReactionResistanceSamplingSignal PathwayStatistical BiasTherapeuticTimeVariantYeastsbiophysical techniquesdesigndietary trace elementdosageenzyme mechanismenzyme modelexperimental studyglycogen synthase kinase 3 betaimprovedin vivoinsightmolecular mechanicsmutation screeningpatient responseside effectsimulation
项目摘要
Summary/Abstract
Lithium is a first-line therapy for millions of people suffering from bipolar disorder, and is promising for
inhibiting development of dementia. Experiments show that a primary mode by which Li+ alters physiological
processes is by reducing activities of a surprisingly limited number of Mg2+-dependent phosphoryl-transferring
enzymes, including phosphomonoesterases and protein kinases. While the (Li-independent) catalytic
mechanisms of these enzymes are quite well-understood, much about the mechanistic details underlying their
Li-susceptibility remain unknown. Not surprisingly, it remains a major challenge to design enzyme variants that
are Li-resistant, and use them to disentangle signaling pathways associated with Li-susceptibilities of individual
enzymes. Here we focus on Li+'s action on kinases, and address the following problem central to alleviating the
issues raised above. Experiments on 71 human kinases show a wide range of Li-susceptibility — many are
unaffected and others are affected to varying degrees. But there is no explanation for these variations.
We address this gap in our understanding of Li-action by using state-of-the-art molecular mechanics
(MM), quantum mechanics (QM) and QM/MM simulations, as well as mutagenesis experiments guided by
bioinformatics and natural selection. Supported by experiments, we explore the overarching hypothesis that Li+
affects kinase activity by interacting directly with their catalytic sites. In Aim 1, simulations will examine how Li+
binds kinases, and how Li+ binding reduces kinase activity. Additionally, simulations will provide insights into
potential allosteric effects that regulate catalytic site activity. Our biochemical, cellular and in vivo experiments
in Aim2 are designed to (i) systematically examine effects of sequence differences between Li-sensitive and Li-
resistant kinases, with the goal of making a Li-sensitive enzyme, GSK-3, resistant to Li+; and (ii) discover key
residues that make certain kinases Li-sensitive. Experiments will also validate findings from simulations, and at
the same time, simulations will provide molecular insights to interpret results from mutational experiments.
Combined analysis of results from simulations and experiments will yield a Li-resistant GSK-3, which is
significant because it will, for the first time, enable us to disentangle GSK-3-driven physiological effects of Li+
from those of other Li-sensitive enzymes. This study will also provide a physical basis to explain observed
variations of Li-sensitivity across kinases, and these biophysical findings will serve as foundations for future
efforts to make other Li-sensitive kinases resistant to Li+, and map their specific phenotypes. We expect that
such efforts will improve understanding and predictions of patient responses to Li-treatments and dosages,
which remains a difficult task. This will both expedite therapy and avoid exposure to side effects. Finally, this
study will explore new advancements in modeling enzyme reactions and yield a validated polarizable force
field for describing Li+/Mg2+ interactions with proteins. This will enable future reliable studies of Li-action on
proteins not considered in this project and broaden exploration of the full range of Mg-binding proteins.
摘要/摘要
锂是数百万双相情感障碍患者的一线疗法,并且有望用于治疗
实验表明,Li+ 改变生理的主要模式。
过程是通过减少令人惊讶的有限数量的 Mg2+ 依赖性磷酰基转移的活性
酶,包括磷酸单酯酶和蛋白激酶,而(不依赖锂)催化。
这些酶的机制已被很好地理解,很多关于其背后的机制细节
锂敏感性仍然未知,毫不奇怪,设计具有这种特性的酶变体仍然是一个重大挑战。
是锂抗性的,并用它们来解开与个体锂敏感性相关的信号通路
在这里,我们重点关注 Li+ 对激酶的作用,并解决以下对于缓解酶的影响至关重要的问题。
上面提出的问题对 71 种人类激酶进行的实验显示出广泛的锂敏感性——许多激酶都是锂敏感性的。
没有受到影响,而其他人则受到不同程度的影响,但对这些变化没有任何解释。
我们通过使用最先进的分子力学来解决我们对锂作用理解上的这一差距
(MM)、量子力学 (QM) 和 QM/MM 模拟,以及由
在生物信息学和自然选择的支持下,我们探索了 Li+ 的总体假设。
在目标 1 中,模拟将检查 Li+ 如何影响激酶活性。
此外,模拟还将提供有关 Li+ 结合如何降低激酶活性的见解。
调节催化位点活性的潜在变构效应。
Aim2中的目的是(i)系统地检查Li敏感和Li-之间序列差异的影响
抗性激酶,目标是使锂敏感酶 GSK-3 对 Li+ 具有抗性;以及 (ii) 发现关键
使某些激酶对锂敏感的残基实验还将验证模拟的结果。
同时,模拟将提供分子见解来解释突变实验的结果。
模拟和实验结果的综合分析将产生抗锂 GSK-3,它是
意义重大,因为它将首次使我们能够解开 GSK-3 驱动的 Li+ 的生理效应
这项研究也将为解释观察到的现象提供物理基础。
不同激酶的锂敏感性的变化,这些生物物理发现将为未来奠定基础
使其他锂敏感激酶对 Li+ 具有抗性,并绘制它们的特定表型。
这将提高对患者对锂治疗和剂量反应的理解和预测,
这仍然是一项艰巨的任务,这既可以加快治疗速度,又可以避免副作用。
研究将探索酶反应建模的新进展并产生经过验证的极化力
描述 Li+/Mg2+ 与蛋白质相互作用的领域,这将使未来对 Li+ 作用的可靠研究成为可能。
本项目中未考虑的蛋白质,并扩大了对全系列镁结合蛋白的探索。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
PETER S KLEIN其他文献
PETER S KLEIN的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('PETER S KLEIN', 18)}}的其他基金
Targeting splicing in myelodysplasia through GSK-3
通过 GSK-3 靶向骨髓增生异常中的剪接
- 批准号:
10677505 - 财政年份:2022
- 资助金额:
$ 32.51万 - 项目类别:
Molecular mechanisms of lithium action on kinases
锂对激酶作用的分子机制
- 批准号:
10705786 - 财政年份:2022
- 资助金额:
$ 32.51万 - 项目类别:
Targeting Coronavirus through Nucleocapsid Phosphorylation
通过核衣壳磷酸化靶向冠状病毒
- 批准号:
10239590 - 财政年份:2021
- 资助金额:
$ 32.51万 - 项目类别:
Maintenance and expansion of long-term hematopoietic stem cells
长期造血干细胞的维持和扩增
- 批准号:
10162647 - 财政年份:2018
- 资助金额:
$ 32.51万 - 项目类别:
The Penn-StARR Program for Research in Residency
Penn-StARR 住院医师研究计划
- 批准号:
10321397 - 财政年份:2018
- 资助金额:
$ 32.51万 - 项目类别:
Maintenance and expansion of long-term hematopoietic stem cells
长期造血干细胞的维持和扩增
- 批准号:
9767274 - 财政年份:2018
- 资助金额:
$ 32.51万 - 项目类别:
An unexpected signaling output for the tumor suppressor APC
肿瘤抑制因子 APC 的意外信号输出
- 批准号:
9504746 - 财政年份:2016
- 资助金额:
$ 32.51万 - 项目类别:
An unexpected signaling output for the tumor suppressor APC
肿瘤抑制因子 APC 的意外信号输出
- 批准号:
9353834 - 财政年份:2016
- 资助金额:
$ 32.51万 - 项目类别:
An unexpected signaling output for the tumor suppressor APC
肿瘤抑制因子 APC 的意外信号输出
- 批准号:
9753259 - 财政年份:2016
- 资助金额:
$ 32.51万 - 项目类别:
Regulation of Neurogenesis and Behavior by GSK-3
GSK-3 对神经发生和行为的调节
- 批准号:
8791140 - 财政年份:2014
- 资助金额:
$ 32.51万 - 项目类别:
相似海外基金
Exploring novel modulators for rescuing cigarette smoke-induced corneal edema and examining iPSC-derived corneal endothelial cells as a treatment modality
探索新型调节剂来挽救香烟烟雾引起的角膜水肿并检查 iPSC 衍生的角膜内皮细胞作为治疗方式
- 批准号:
10723408 - 财政年份:2023
- 资助金额:
$ 32.51万 - 项目类别:
Access to medical care and health care utilization among low-income immigrants
低收入移民获得医疗保健的机会和医疗保健利用
- 批准号:
10789176 - 财政年份:2023
- 资助金额:
$ 32.51万 - 项目类别:
MRWeight: Medical Residents Learning Weight Management Counseling Skills -- A Multi-Modal, Technology-Assisted, Spaced Education Program
MRWeight:住院医生学习体重管理咨询技能——多模式、技术辅助、间隔教育计划
- 批准号:
10561356 - 财政年份:2023
- 资助金额:
$ 32.51万 - 项目类别: