Stratified and mechanically-tough biomaterial implant to improve tendon-to-bone enthesis regeneration
分层且机械坚固的生物材料植入物可改善肌腱到骨附着点的再生
基本信息
- 批准号:10495364
- 负责人:
- 金额:$ 32.08万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-09-27 至 2026-07-31
- 项目状态:未结题
- 来源:
- 关键词:AddressAdoptedAffectAllogenicAutologousBenchmarkingBiocompatible MaterialsBioreactorsCell Differentiation processCellsCicatrixClinicalCollagenDataExtracellular MatrixFailureFibrocartilagesFinancial HardshipFunctional RegenerationGelatinHarvestHistologyHydrogelsImmunohistochemistryImplantIn Situ HybridizationIn VitroInjuryKineticsLinkMeasuresMechanical StimulationMechanicsModelingMorphologyMusculoskeletalNatural regenerationNatureOperative Surgical ProceduresPainPatternPeptide Signal SequencesPerformancePeriodicityPhenotypePopulationProcessQuality of lifeRattusRotator CuffShoulderSiteSourceStimulusStressStructureTendon InjuriesTendon structureTissuesbiomaterial interfaceboneclinical translationdemographicsdensitydesignimplantationimprovedin vivoin vivo Modelinnovationinsightmechanical propertiesmesenchymal stromal cellmimeticsregeneration potentialregenerativerepairedresponserotator cuff injuryrotator cuff tearscaffoldstandard of care
项目摘要
ABSTRACT
Rotator cuff tears are common and primarily initiate at the stratified fibrocartilage interface (enthesis) linking
tendon to bone. Surgical reattachment of tendon to bone forms a narrow fibrovascular scar rather than
regenerates a continuous fibrocartilage enthesis. The resultant sharp boundary between mechanically
mismatched tendon and bone leads to strain concentrations and high rates of re-failure at the enthesis. The
objective of this proposal is to guide functional regeneration and repair of the structure, composition, and
mechanical performance of the injured tendon-to-bone enthesis using an innovative stratified biomaterial.
Intraoperative implantation of MSCs at the injury site during surgical repair is an attractive option to accelerate
enthesis regeneration. However it is essential to develop a biomaterial carrier to improve retention and
regenerative activity of bioactive MSCs across the injury site. We will evaluate the design of an innovative
stratified biomaterial to provide mechanical and trophic stimuli to promote MSC retention and enthesis
regeneration. We have generated rigorous proof-of-principle data for a collagen biomaterial that contains bone-
and tendon-mimetic scaffold compartments linked with a continuous hydrogel interface. We will show the
hydrogel interface inhibits strain concentrations that typically form between biomaterials with mismatched
mechanical properties under load. Further, the hydrogel interface provides a site to accelerate fibrocartilage-
like differentiation and remodeling in response to trophic factors produced in adjacent tendon- and bone-
mimetic scaffold compartments. Taken together, we hypothesize inclusion of a continuous hydrogel zone
linking tendon- and bone-specific scaffold compartments provides mechanical and trophic advantages to
accelerate regenerative potency versus monolithic and conventional stratified biomaterials. To address our
hypothesis we will first determine if and how a mechanically-optimized hydrogel insertion both increases
mechanical performance and supports fibrocartilage differentiation in vitro (Aim 1). We will subsequently
demonstrate trophic factors produced across the stratified biomaterial accelerate enthesis-specific MSC
differentiation and matrix remodeling in vitro (Aim 2). We will ultimately evaluate functional repair and
regeneration of the rat rotator cuff enthesis using an enthesis biomaterial-MSC construct in vivo (Aim 3). We
will use in vitro cyclic strain bioreactor studies to optimize MSC-biomaterial interactions, then a tiered set of in
vivo rat rotator cuff injury models to benchmark the quality and kinetics of enthesis regeneration via cellular,
tissue morphology, and mechanical metrics. This project will provide essential insight to aid clinical translation
of a biomaterial therapy to improve musculoskeletal enthesis regeneration.
抽象的
肩袖撕裂很常见,主要始于分层纤维软骨界面(附着点)连接
肌腱到骨头。肌腱与骨的手术重新附着会形成狭窄的纤维血管疤痕,而不是
再生连续的纤维软骨附着点。由此产生的机械之间的尖锐界限
肌腱和骨骼不匹配会导致张力集中和附着点再次失败率很高。这
该提案的目标是指导结构、组成和功能的再生和修复
使用创新的分层生物材料对受伤的肌腱至骨附着点进行机械性能研究。
在手术修复过程中,术中在损伤部位植入间充质干细胞是加速修复过程的一个有吸引力的选择
附着点再生。然而,开发一种生物材料载体以提高保留率和
跨损伤部位的生物活性 MSC 的再生活性。我们将评估创新的设计
分层生物材料提供机械和营养刺激,促进 MSC 保留和附着
再生。我们已经为含有骨的胶原生物材料生成了严格的原理验证数据
和与连续水凝胶界面连接的模拟肌腱支架隔室。我们将展示
水凝胶界面抑制通常在不匹配的生物材料之间形成的应变浓度
负载下的机械性能。此外,水凝胶界面提供了加速纤维软骨形成的位点
例如响应邻近肌腱和骨中产生的营养因子的分化和重塑
模拟支架隔间。综上所述,我们假设包含连续的水凝胶区域
连接肌腱和骨特异性支架隔室提供了机械和营养优势
与整体和传统分层生物材料相比,加速再生能力。为了解决我们的
假设我们首先确定机械优化的水凝胶插入是否以及如何增加
机械性能并支持体外纤维软骨分化(目标 1)。我们随后将
证明分层生物材料中产生的营养因子可加速附着特异性 MSC
体外分化和基质重塑(目标 2)。我们最终将评估功能修复和
使用体内附着点生物材料-MSC 构建体再生大鼠肩袖附着点(目标 3)。我们
将使用体外循环应变生物反应器研究来优化 MSC-生物材料相互作用,然后进行一系列分层的
体内大鼠肩袖损伤模型,通过细胞对附着点再生的质量和动力学进行基准测试,
组织形态和力学指标。该项目将为帮助临床转化提供重要的见解
改善肌肉骨骼附着点再生的生物材料疗法。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Brendan A. Harley其他文献
Three‐dimensional tissue cytometer based on high‐speed multiphoton microscopy
基于高速多光子显微镜的三维组织细胞仪
- DOI:
- 发表时间:
2007 - 期刊:
- 影响因子:3.7
- 作者:
Ki H. Kim;T. Ragan;M. Previte;K. Bahlmann;Brendan A. Harley;Dominika M. Wiktor;M. Stitt;Carrie A. Hendricks;Karen H Almeida;B. Engelward;P. So - 通讯作者:
P. So
Enhanced live cell imagingviaphotonic crystal enhanced fluorescence microscopy
- DOI:
10.1039/c4an01508h - 发表时间:
2014-09 - 期刊:
- 影响因子:4.2
- 作者:
Weili Chen;Kenneth D. Long;Hojeong Yu;Yafang Tan;Ji Sun Choi;Brendan A. Harley;Brian T. Cunningham - 通讯作者:
Brian T. Cunningham
Brendan A. Harley的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Brendan A. Harley', 18)}}的其他基金
Perivascular tissue models to overcome MGMT-mediated temozolomide resistance in glioblastoma
克服胶质母细胞瘤中 MGMT 介导的替莫唑胺耐药性的血管周围组织模型
- 批准号:
10818804 - 财政年份:2023
- 资助金额:
$ 32.08万 - 项目类别:
Synthetic manipulation of engineered perivascular niches
工程化血管周围生态位的综合操纵
- 批准号:
10831221 - 财政年份:2023
- 资助金额:
$ 32.08万 - 项目类别:
Perivascular tissue models to overcome MGMT-mediated temozolomide resistance in glioblastoma
克服胶质母细胞瘤中 MGMT 介导的替莫唑胺耐药性的血管周围组织模型
- 批准号:
10818769 - 财政年份:2023
- 资助金额:
$ 32.08万 - 项目类别:
Stratified and mechanically-tough biomaterial implant to improve tendon-to-bone enthesis regeneration
分层且机械坚固的生物材料植入物可改善肌腱到骨附着点的再生
- 批准号:
10666626 - 财政年份:2021
- 资助金额:
$ 32.08万 - 项目类别:
Mineralized collagen composite to accelerate craniofacial bone regeneration
矿化胶原复合物加速颅面骨再生
- 批准号:
10185367 - 财政年份:2021
- 资助金额:
$ 32.08万 - 项目类别:
Assembling granular stem cell niches using microdroplet hydrogels
使用微滴水凝胶组装颗粒干细胞生态位
- 批准号:
10493341 - 财政年份:2021
- 资助金额:
$ 32.08万 - 项目类别:
Gradient biomaterials to investigate niche regulation of hematopoiesis
梯度生物材料研究造血的生态位调节
- 批准号:
10413538 - 财政年份:2021
- 资助金额:
$ 32.08万 - 项目类别:
Mineralized collagen composite to accelerate craniofacial bone regeneration
矿化胶原复合物加速颅面骨再生
- 批准号:
10606592 - 财政年份:2021
- 资助金额:
$ 32.08万 - 项目类别:
Assembling granular stem cell niches using microdroplet hydrogels
使用微滴水凝胶组装颗粒干细胞生态位
- 批准号:
10390730 - 财政年份:2021
- 资助金额:
$ 32.08万 - 项目类别:
Mineralized collagen composite to accelerate craniofacial bone regeneration
矿化胶原复合物加速颅面骨再生
- 批准号:
10400873 - 财政年份:2021
- 资助金额:
$ 32.08万 - 项目类别:
相似国自然基金
探索间质机械力通过影响SMAD4/JNK/PIN1功能轴对胰腺癌糖代谢重编程的调控机制
- 批准号:82372906
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
色氨酸代谢产物5-HIAA通过干预AHR-NFATc1途径影响RA骨破坏的机制研究
- 批准号:82302049
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
肠道菌群通过短链脂肪酸代谢影响妊娠期糖尿病发病风险的分子流行病学研究
- 批准号:82304218
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
SUV39H2通过铁死亡影响乳腺癌转移的作用及机制研究
- 批准号:82303121
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
肠罗斯拜瑞氏菌通过丙酸失活酪氨酸激酶JAK2影响STAT3磷酸化阻抑UC肠道纤维化的分子机制研究
- 批准号:82370539
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
相似海外基金
Implementation of Innovative Treatment for Moral Injury Syndrome: A Hybrid Type 2 Study
道德伤害综合症创新治疗的实施:2 型混合研究
- 批准号:
10752930 - 财政年份:2024
- 资助金额:
$ 32.08万 - 项目类别:
Examining the effects of Global Budget Revenue Program on the Costs and Quality of Care Provided to Cancer Patients Undergoing Chemotherapy
检查全球预算收入计划对接受化疗的癌症患者提供的护理成本和质量的影响
- 批准号:
10734831 - 财政年份:2023
- 资助金额:
$ 32.08万 - 项目类别:
Investigating the role of myenteric macrophages in enteric synucleinopathy
研究肌间巨噬细胞在肠突触核蛋白病中的作用
- 批准号:
10678094 - 财政年份:2023
- 资助金额:
$ 32.08万 - 项目类别:
Crosstalk Between Nurr1 and Risk Factors of Parkinson's Disease and its Regulation by Nurr1's Ligands
Nurr1与帕金森病危险因素的串扰及其配体的调控
- 批准号:
10677221 - 财政年份:2023
- 资助金额:
$ 32.08万 - 项目类别:
Single cell transcriptomics of nerves that lack Remak bundles
缺乏 Remak 束的神经的单细胞转录组学
- 批准号:
10649087 - 财政年份:2023
- 资助金额:
$ 32.08万 - 项目类别: