Combining information from multiple circadian activity rhythm metrics to optimally detect mild cognitive impairment using a consumer wearable
结合多个昼夜节律活动指标的信息,使用消费者可穿戴设备以最佳方式检测轻度认知障碍
基本信息
- 批准号:10478935
- 负责人:
- 金额:$ 19.4万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-09-05 至 2024-05-31
- 项目状态:已结题
- 来源:
- 关键词:AccelerometerAdultAffectAgeAgingAlgorithmsAlzheimer&aposs disease related dementiaAlzheimer&aposs disease riskAnimalsApple watchBehavior TherapyBehavioralBig DataBiological AssayBiological MarkersBrainCharacteristicsClassificationClinicClinicalCognitiveCohort StudiesCollaborationsCommunitiesConflict (Psychology)DataDementiaDetectionDevelopmentDiagnosisDiagnosticDiseaseEarly DiagnosisEarly InterventionElderlyExploratory/Developmental Grant for Diagnostic Cancer ImagingFractalsFutureGoalsHealthHispanic Community Health Study/Study of LatinosHourHuman ActivitiesImpaired cognitionIncidenceIndividualInterventionLettersMachine LearningMeasurementMeasuresMethodsModelingMonitorNatureNerve DegenerationNeuropsychologyObservational StudyOutcomeParticipantPathogenesisPathologyPatientsPatternPersonsPhasePopulationPreventionPrevention approachProcessRegulationResearchResearch PersonnelResourcesRestRiskSamplingScienceSeriesSignal TransductionSleepSourceStructureSystemTestingTimeTrainingTranslatingTranslational ResearchUnited States Dept. of Health and Human ServicesValidationWorkagedarchive dataarchived databasecircadiancognitive functioncohortdementia riskdiagnostic biomarkerexperienceglymphatic clearancehigh rewardhigh riskimprovedindexingmild cognitive impairmentmodifiable behaviornovelpre-clinicalprediction algorithmprimary outcomeprototyperecruitrisk predictionrisk stratificationroutine carescale upscreeningstatistical learningsystematic reviewuser-friendlywearable device
项目摘要
Abstract: Widely-scalable methods for the earlier detection of elevated Alzheimer’s Disease and Related
Dementia (ADRD) would enable earlier intervention and can help reduce/delay disease incidence. Consumer
wearable technologies that passively gather “big data” signals could be leveraged to detect the early signs of
elevated ADRD risk (see NOT-AG-20-017), in a relatively inexpensive and scalable fashion. One promising set
of signals that can be captured by consumer wearable devices, but are currently only assessed in research
settings, reflects the Circadian Activity Rhythm (CAR). Human activity follows a predictable 24-hour pattern
known as the CAR. Various CAR characteristics are disrupted in ADRDs, reflect ADRD biomarkers levels
(even in the pre-clinical stage), and predict future cognitive decline. However, observational studies have yet to
conclusively demonstrate which CAR measure(s) best signal early-stage ADRD processes, and could help
with early risk stratification. Previous studies have used subsets of the available CAR metrics to establish
associations, rather than leveraging multiple metrics to improve ADRD risk prediction. We propose that using a
comprehensive panel of CAR metrics could identify combinations of CAR metrics that are sensitive to ADRD
risk. Furthermore, we propose that the translation of research findings into clinical screening has been difficult
because CAR measurement relies on researcher-, rather than clinic-/user-, friendly systems. To fill these gaps,
we propose leveraging consumer wearables, existing data, sleep/circadian science, and machine learning. Our
overarching goal is to evaluate evidence for a path forward, from observing associations, towards clinically
useful ADRD risk detection with consumer wearables. Our team includes experts in sleep/CAR-related health
risks (Dr. Smagula, PI); neuropsychology and activity in aging (Dr. Gujral, co-I); and time series
analytics/statistical learning (Dr. Krafty, co-I). We partnered with leaders of major cohorts (see letters of
support) that provide the initial data. Aim 1 will compute a comprehensive panel of CAR measures in a sample
of 766 adults aged 50+; then use machine learning to develop algorithms leveraging CAR measures to predict
the likelihood of Mild Cognitive Impairment (MCI; a diagnostic marker of elevated ADRD risk). Aim 2 will use a
new testing sample (n=25 with and n=25 without MCI) to validate if applying this algorithm to data from a
consumer-wearable accurately detects MCI. Dr. Smagula already developed a working prototype measuring
CARs using the Apple Watch called the Circadian Activity Profiling System. This R21 can have impact on the
field of ADRD risk detection by producing: evidence regarding which CAR metrics best signal MCI; an initial
algorithm that combines information regarding CARs to passively detect the likelihood of MCI; and by refining
our system for collecting these signals on a popular consumer wearable (the Apple Watch). We will also
develop collaborations with additional cohorts so that, if we find evidence supporting potential clinical utility of
this approach, we will be prepared to develop a definitive algorithm in an R01 using data from multiple studies.
摘要:早期检测阿尔茨海默病及相关疾病的可广泛扩展的方法
痴呆症 (ADRD) 可以实现早期干预,并有助于减少/延迟消费者疾病的发生。
可以利用被动收集“大数据”信号的可穿戴技术来检测早期迹象
以一种相对便宜且可扩展的方式提高 ADRD 风险(参见 NOT-AG-20-017)。
消费者可穿戴设备可以捕获的信号,但目前仅在研究中进行评估
设置,反映了昼夜节律活动节律 (CAR),人类活动遵循可预测的 24 小时模式。
ADRD 中的各种 CAR 特征被破坏,反映了 ADRD 生物标志物水平。
(即使在临床前阶段),并预测未来的认知能力下降但是,观察性研究尚未完成。
最终证明哪些 CAR 措施最能体现早期 ADRD 过程的信号,并且可以提供帮助
之前的研究使用了可用 CAR 指标的子集来建立早期风险分层。
我们建议使用多个指标来改进 ADRD 风险预测。
全面的 CAR 指标面板可以识别对 ADRD 敏感的 CAR 指标组合
此外,我们认为将研究结果转化为临床筛查一直很困难。
因为 CAR 测量依赖于研究人员友好的系统,而不是诊所/用户友好的系统来填补这些空白。
我们建议利用消费者可穿戴设备、现有数据、睡眠/昼夜节律科学和机器学习。
总体目标是评估从观察关联到临床应用的前进道路的证据
通过消费者可穿戴设备进行有用的 ADRD 风险检测 我们的团队包括睡眠/CAR 相关健康方面的专家。
风险(Smagula 博士,PI);衰老过程中的神经心理学和活动(Gujral 博士,co-I);
分析/统计学习(Krafty 博士,co-I)我们与主要群体的领导者合作(参见信件)。
支持)提供初始数据,目标 1 将计算样本中的全面 CAR 测量值。
766 名 50 岁以上的老年人;然后利用机器学习开发算法,利用 CAR 措施进行预测
轻度认知障碍(MCI;ADRD 风险升高的诊断标志物)的可能性将使用 a。
新的测试样本(n=25,带 MCI,n=25 不带 MCI)来验证是否将此算法应用于来自
消费者可穿戴设备可准确检测 MCI。Smagula 博士已经开发出一种测量工作原型。
使用 Apple Watch 的 CAR 称为昼夜节律活动分析系统,该 R21 可能会对身体产生影响。
ADRD 风险检测领域,通过提供以下证据:有关哪些 CAR 指标最能表明 MCI 的信号;
结合有关 CAR 的信息来被动检测 MCI 可能性的算法;
我们还将在流行的消费者可穿戴设备(Apple Watch)上收集这些信号。
与其他队列开展合作,以便,如果我们发现支持潜在临床效用的证据
通过这种方法,我们将准备使用多项研究的数据在 R01 中开发明确的算法。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Association of 24-Hour Activity Pattern Phenotypes With Depression Symptoms and Cognitive Performance in Aging.
24 小时活动模式表型与抑郁症状和衰老认知表现的关联。
- DOI:
- 发表时间:2022-10-01
- 期刊:
- 影响因子:25.8
- 作者:Smagula, Stephen F;Zhang, Gehui;Gujral, Swathi;Covassin, Naima;Li, Jingen;Taylor, Warren D;Reynolds 3rd, Charles F;Krafty, Robert T
- 通讯作者:Krafty, Robert T
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Stephen F Smagula其他文献
Stephen F Smagula的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Stephen F Smagula', 18)}}的其他基金
Combining information from multiple circadian activity rhythm metrics to optimally detect mild cognitive impairment using a consumer wearable
结合多个昼夜节律活动指标的信息,使用消费者可穿戴设备以最佳方式检测轻度认知障碍
- 批准号:
10300129 - 财政年份:2021
- 资助金额:
$ 19.4万 - 项目类别:
Morning Activation Deficits and Depression Symptoms: Mechanisms and Modifiability in Dementia Caregivers
早晨激活缺陷和抑郁症状:痴呆症护理人员的机制和可修改性
- 批准号:
10362081 - 财政年份:2021
- 资助金额:
$ 19.4万 - 项目类别:
Developing a widely-useable wearable Circadian Profiling System to assess 24-hour behavioral rhythm disruption in people with dementia and their family caregivers
开发可广泛使用的可穿戴昼夜节律分析系统,以评估痴呆症患者及其家庭护理人员的 24 小时行为节律紊乱
- 批准号:
10321398 - 财政年份:2021
- 资助金额:
$ 19.4万 - 项目类别:
Developing a widely-useable wearable Circadian Profiling System to assess 24-hour behavioral rhythm disruption in people with dementia and their family caregivers
开发可广泛使用的可穿戴昼夜节律分析系统,以评估痴呆症患者及其家庭护理人员的 24 小时行为节律紊乱
- 批准号:
10612523 - 财政年份:2021
- 资助金额:
$ 19.4万 - 项目类别:
Morning Activation Deficits and Depression Symptoms: Mechanisms and Modifiability in Dementia Caregivers
早晨激活缺陷和抑郁症状:痴呆症护理人员的机制和可修改性
- 批准号:
10636933 - 财政年份:2021
- 资助金额:
$ 19.4万 - 项目类别:
Sleep-wake, cognitive, and affective risks for a worse course of post-discharge suicidal ideation in older adults with major depression
患有重度抑郁症的老年人出院后自杀意念恶化的睡眠-觉醒、认知和情感风险
- 批准号:
9974894 - 财政年份:2020
- 资助金额:
$ 19.4万 - 项目类别:
Depression in dementia caregivers: Linking brain structure and sleep-wake risks
痴呆症护理人员的抑郁症:将大脑结构与睡眠-觉醒风险联系起来
- 批准号:
10094254 - 财政年份:2017
- 资助金额:
$ 19.4万 - 项目类别:
相似国自然基金
成人免疫性血小板减少症(ITP)中血小板因子4(PF4)通过调节CD4+T淋巴细胞糖酵解水平影响Th17/Treg平衡的病理机制研究
- 批准号:82370133
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
依恋相关情景模拟对成人依恋安全感的影响及机制
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
生活方式及遗传背景对成人不同生命阶段寿命及死亡的影响及机制的队列研究
- 批准号:
- 批准年份:2021
- 资助金额:56 万元
- 项目类别:面上项目
成人与儿童结核病发展的综合研究:细菌菌株和周围微生物组的影响
- 批准号:81961138012
- 批准年份:2019
- 资助金额:100 万元
- 项目类别:国际(地区)合作与交流项目
统计学习影响成人汉语二语学习的认知神经机制
- 批准号:31900778
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Environmental Exposures & Sleep in the Nurses' Health Study 3
环境暴露
- 批准号:
10677271 - 财政年份:2023
- 资助金额:
$ 19.4万 - 项目类别:
Objective assessment of vocal fatigue in laboratory and real-world settings
实验室和现实环境中声音疲劳的客观评估
- 批准号:
10723486 - 财政年份:2023
- 资助金额:
$ 19.4万 - 项目类别:
Fathers and Children Exercising Together (FACEiT)
父亲和孩子一起锻炼 (FACEiT)
- 批准号:
10789457 - 财政年份:2023
- 资助金额:
$ 19.4万 - 项目类别:
Application of social cognitive theory to physical activity behavior among adults with Crohn's disease
社会认知理论在克罗恩病成人体力活动行为中的应用
- 批准号:
10745823 - 财政年份:2023
- 资助金额:
$ 19.4万 - 项目类别:
Investigating the role of public transit on health behaviors among older adults with disabilities
调查公共交通对残疾老年人健康行为的作用
- 批准号:
10644067 - 财政年份:2023
- 资助金额:
$ 19.4万 - 项目类别: