Enhancement of tumor radiation response by ultrasound-driven nanobubble stimulation
超声驱动纳米气泡刺激增强肿瘤放射反应
基本信息
- 批准号:10468225
- 负责人:
- 金额:$ 46.12万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-08-11 至 2025-07-31
- 项目状态:未结题
- 来源:
- 关键词:Acoustic StimulationAcousticsAcuteAddressAftercareAgeAnimalsAntineoplastic ProtocolsBiodistributionBiological MarkersBiomedical EngineeringBlood - brain barrier anatomyBlood VesselsCaliberCell DeathCell physiologyCell surfaceCellsClinicClinicalClinical TrialsCollaborationsComb animal structureCombined Modality TherapyContrast MediaDataDevelopmentDiagnostic ImagingDoctor of PhilosophyDoseEarly treatmentEndotheliumEnsureEvaluationFormulationFrequenciesFundingGoalsGrantHead and Neck CancerHistologicHourImageImmunocompromised HostKineticsLeadLinkMalignant neoplasm of prostateMeasuresMechanicsMediatingMedicalMethodologyMethodsMicrobubblesModelingModulusMonitorMusNeoplasms in Vascular TissueOryctolagus cuniculusPatientsPerformancePermeabilityPharmaceutical PreparationsPhysiciansPhysicsPrediction of Response to TherapyProductionProstate Cancer therapyProtocols documentationPublicationsRadiationRadiation Dose UnitRadiation OncologyRadiation induced damageRadiation therapyRadiation-Sensitizing AgentsRadiosensitizationReactive Oxygen SpeciesResearchResearch PersonnelResidual stateResolutionScientistSensitivity and SpecificitySignal TransductionSolid NeoplasmSonicationTechniquesTechnologyTestingTherapeuticTimeTissuesTranslationsTreatment EfficacyTreatment FailureTreatment StepUltrasonicsVascular EndotheliumWorkbasecancer biomarkerscancer cellcancer radiation therapycancer therapycontrast enhancedeffectiveness evaluationexperienceexperimental studyhuman modelimaging approachimaging biomarkerimprovedimproved outcomein vivomalignant breast neoplasmmembermouse modelmultidisciplinarynanobubbleneoplastic cellnovelphotoacoustic imagingphysical propertypredictive toolsprogramsprostate cancer modelradiation responseradio frequencyreceptorresearch clinical testingresponseside effectsuccesssynergismtheranosticstissue oxygenationtooltreatment optimizationtreatment responsetumorultrasounduptake
项目摘要
Project Summary
Radiation is a mainstay of cancer treatment, yet challenges remain. The long term goal of the proposed research is to
transform traditional cancer radiation therapy protocols by including a pre-treatment step involving perturbing the vascular
and cellular function of tumors with ultrasound-activated radiosensitizing nanobubbles (NBs). The new paradigm in cancer
treatment protocol builds upon a decade of prior work that used commercial microbubbles (MBs) to elicit a radiosensitizing
effect. The MB radiosensitization effects are primarily intravascular, with significant endothelial damage incurred. In
contrast, in the strategy proposed here, we hypothesize that the NBs will also extravasate into the tumor parenchyma, which
will result in significant increases in direct damage to the cancer cells, in addition to the vascular damage. Thus the effect
will be both intra- and extra-vascular. The tumors treated in this way will respond better to radiation, lowering the effective
radiation dose and decreasing residual surviving tumor. The technique further allows targeting of tumor specific volumes
allowing healthy tissues to be spared. We have demonstrated in preliminary studies in vivo that ultrasound-activated NB
perturbation of tumors results in a significantly greater enhancement in tumor kill compared to MBs when followed by
traditional radiation therapy.
This approach could markedly improve existing therapies and reduce the associated side-effects. This is clinically important
for prostate cancer treatment where collateral damage and off-target effects are common and lead to years of complications
in many patients. Therefore, we propose a set of four specific aims to test, develop, optimize, demonstrate and quantify the
efficacy of this novel technique in prostate cancer. Aim 1 will focus on the development of stable, uniformly-sized
radiosensitizing NBs. The acoustic and bio-activity of the bubbles will be measured, and baseline biodistribution in tumor
bearing mice will be carried out. In Aim 2, the NBs will be tested in combination with radiation in a mouse model of prostate
cancer so that treatment parameters can be optimized. In Aim 3, carried out concurrently with Aim 2, we will develop a
photoacoustic imaging approach for monitoring early treatment response. This tool will be used to predict therapeutic
efficacy and completeness of tumor treatment as soon as 2 hours after the therapy. Finally, in Aim 4, we will test the
combination approach in a large (rabbit) orthotopic model of human prostate cancer.
We have assembled a multidisciplinary MPI team of investigators with a demonstrated track record of collaborative work
in this field. The team includes Dr. Czarnota MD/Ph.D., a physician-scientist and discoverer of the original MB sensitizing
approach now in clinical trials, Dr. Michael Kolios Ph.D. is a medical physicist with broad experience in photoacoustic
imaging for therapy response and ultrasound physics and Dr. Agata Exner, Ph.D., a biomedical engineer with extensive
expertise in formulation and implementation of nanobubbles for imaging and therapy. Members of the team are actively
collaborating, have shared publications, grants and projects, and record of technology translation to the clinic. The team
will ensure timely completion of the proposed research and rapid translation of the approach to clinical use.
项目概要
放射是癌症治疗的主要手段,但挑战仍然存在。拟议研究的长期目标是
通过包括扰动血管的预处理步骤来改变传统的癌症放射治疗方案
和超声激活放射增敏纳米气泡(NB)的肿瘤细胞功能。癌症的新范例
治疗方案建立在十年前的工作基础上,该工作使用商业微泡(MB)来引发放射增敏
影响。 MB 放射增敏作用主要是血管内的,会引起显着的内皮损伤。在
相反,在这里提出的策略中,我们假设 NB 也会外渗到肿瘤实质中,这
除了血管损伤之外,还会导致对癌细胞的直接损伤显着增加。这样的效果
将是血管内和血管外的。以这种方式治疗的肿瘤将对放射反应更好,从而降低有效剂量
辐射剂量和减少残留存活肿瘤。该技术进一步允许靶向肿瘤特定体积
让健康组织免受伤害。我们已经在体内初步研究中证明,超声激活的 NB
与 MB 相比,扰动肿瘤可显着增强肿瘤杀灭效果
传统放射治疗。
这种方法可以显着改善现有疗法并减少相关副作用。这在临床上很重要
用于前列腺癌治疗,附带损害和脱靶效应很常见,并会导致多年的并发症
在许多患者中。因此,我们提出了一组四个具体目标来测试、开发、优化、演示和量化
这项新技术在前列腺癌中的功效。目标 1 将重点发展稳定、大小统一的
放射增敏 NB。将测量气泡的声学和生物活性,以及肿瘤中的基线生物分布
将进行生育小鼠。在目标 2 中,将在小鼠前列腺模型中结合辐射对 NB 进行测试
癌症,以便优化治疗参数。在与目标 2 同时进行的目标 3 中,我们将开发一个
用于监测早期治疗反应的光声成像方法。该工具将用于预测治疗
治疗后 2 小时即可观察肿瘤治疗的有效性和完整性。最后,在目标 4 中,我们将测试
人类前列腺癌大型(兔)原位模型中的组合方法。
我们组建了一支多学科 MPI 研究人员团队,具有良好的协作记录
在这个领域。该团队包括医学博士/博士 Czarnota 博士,他是一位医师科学家,也是原始 MB 致敏剂的发现者
Michael Kolios 博士博士表示,该方法目前正在进行临床试验。是一位在光声方面拥有丰富经验的医学物理学家
Agata Exner 博士是一位生物医学工程师,拥有广泛的研究成果,可用于治疗反应和超声物理成像。
用于成像和治疗的纳米气泡的配制和实施方面的专业知识。团队成员积极主动
合作,共享出版物、赠款和项目以及临床技术翻译记录。团队
将确保及时完成拟议的研究并将该方法快速转化为临床使用。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Gregory Jan Czarnota其他文献
Gregory Jan Czarnota的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Gregory Jan Czarnota', 18)}}的其他基金
Developing a quantitative ultrasound breast scanner for identifying early response of breast cancer to chemotherapy
开发定量超声乳腺扫描仪来识别乳腺癌对化疗的早期反应
- 批准号:
10504175 - 财政年份:2022
- 资助金额:
$ 46.12万 - 项目类别:
Developing a quantitative ultrasound breast scanner for identifying early response of breast cancer to chemotherapy
开发定量超声乳腺扫描仪来识别乳腺癌对化疗的早期反应
- 批准号:
10686414 - 财政年份:2022
- 资助金额:
$ 46.12万 - 项目类别:
Enhancement of tumor radiation response by ultrasound-driven nanobubble stimulation
超声驱动纳米气泡刺激增强肿瘤放射反应
- 批准号:
10316459 - 财政年份:2021
- 资助金额:
$ 46.12万 - 项目类别:
Enhancement of tumor radiation response by ultrasound-driven nanobubble stimulation
超声驱动纳米气泡刺激增强肿瘤放射反应
- 批准号:
10671576 - 财政年份:2021
- 资助金额:
$ 46.12万 - 项目类别:
相似国自然基金
鼓泡床密相区温度、颗粒浓度与气泡分布的二维同步声学双参数成像
- 批准号:62301355
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
非厄米声学晶格系统中的拓扑物理研究
- 批准号:12374418
- 批准年份:2023
- 资助金额:53 万元
- 项目类别:面上项目
多孔声学超材料宏微观结构耦合强化吸声机制与多尺度结构设计技术
- 批准号:52375122
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
轨道模式依赖的声学拓扑态及其应用研究
- 批准号:12304492
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
声学拓扑安德森绝缘体拓扑特性研究
- 批准号:12304486
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Changes in apical cochlear mechanics after cochlear implantation
人工耳蜗植入后耳蜗顶端力学的变化
- 批准号:
10730981 - 财政年份:2023
- 资助金额:
$ 46.12万 - 项目类别:
Therapeutic hypothermia to preserve residual hearing in veterans receiving cochlear implantation
低温治疗可保护接受人工耳蜗植入的退伍军人的残余听力
- 批准号:
10314602 - 财政年份:2022
- 资助金额:
$ 46.12万 - 项目类别:
Binaural cue sensitivity in children and adults with combined electric and acoustic stimulation
电和声相结合刺激儿童和成人的双耳提示敏感性
- 批准号:
10585556 - 财政年份:2022
- 资助金额:
$ 46.12万 - 项目类别:
Application of mild therapeutic hypothermia for hearing conservation during cochlear implant surgeries
亚低温治疗在人工耳蜗植入手术中听力保护中的应用
- 批准号:
10327695 - 财政年份:2021
- 资助金额:
$ 46.12万 - 项目类别:
Enhancement of tumor radiation response by ultrasound-driven nanobubble stimulation
超声驱动纳米气泡刺激增强肿瘤放射反应
- 批准号:
10316459 - 财政年份:2021
- 资助金额:
$ 46.12万 - 项目类别: