Analytical Chemistry

分析化学

基本信息

项目摘要

Over the past year, the COVID-19 global pandemic has significantly impacted the ACC through a necessary lab shutdown, modification of laboratory operating procedures, and a shift to teleworking status. As the majority of ACC tasks and responsibilities require laboratory access, we were presented with the logistical challenge of providing core analytical chemistry services while maintaining the health and safety of DPI staff. Research activities were prioritized with COVID-related projects taking precedence, followed by ongoing projects requiring minimal experiments to complete, especially trainee projects as their time at NCATS was limited. The initiation of new projects was restricted unless they focused on COVID-19. The continued success of DPI research projects, initiatives, and programs depends on the uninterrupted operation of analytical services and resources, which facilitates forward progress and translational discoveries. Furthermore, analytical data and analysis must be made promptly available in a convenient format to allow timely and informed decisions regarding the direction or even continuation of projects. To accomplish this, the ACC needed to develop new and modify existing protocols and workflows to handle the increased workload under the new operational model. This included (i) modifications to the sample purification and processing platform to minimize delays in material transfer to Compound Management, (ii) enabling direct access to instrument data for remote analysis and review, (iii) establishing ways to conduct training in a socially distant manner for new employees and fellows, and (iv) maintaining and updating chemistry software and application in a completely virtual capacity. The ACC has continued to perform the core responsibility of purifying samples with material in the range of milligrams to grams. Major and minor components (< 0.1 percent) have been isolated for additional testing and characterization as required. By utilizing a centralized sample purification and processing platform, compounds can be isolated, purified, concentrated, distributed, registered, and ready for biological testing in a cycle time of one week. Automated protocols and workflows were employed to perform such tasks as consolidation and concentration of purified fractions and the dispensing of material into 1D barcoded vials, Matrix 2D barcoded tubes and/or 96-well plates for efficient tracking, storing, and testing. A variety of high performance and ultra high-performance liquid chromatographs are utilized to determine identity and purity with the capability of automated high-throughput analysis on single quadrupole liquid chromatography/mass spectrometry instrumentation. Due to the wide variety of analytes tested, the teams range of analytical detectors includes ultraviolet (UV), mass spectrometry (MS; positive and negative mode), and evaporative light scattering detector and fluorescence (ELSD). Time-of-flight mass spectrometry (TOF-MS) is employed to achieve formula confirmation and identity determination of unknowns. In addition to purification and analysis of chemical entities related to COVID-19, the ACC established several project collaborations focused on COVID-19 research. One such collaboration is between the ACC, the DPI Informatics Core, and the Early Translational Branch (ETB) 3D Tissue Bioprinting group working on 2D and 3D lung cell omics models to discover chemical and biological markers related to SARS-CoV-2 leveraging our experience in metabolomics, proteomics, tissue printing, MS-based screening assay, and data analysis. Additionally, we are collaborating with ETB focused on the compositional analysis of Mutian, a feline coronavirus treatment, as well as with the ADME team within the Therapeutic Development Branch (TDB) to develop high-throughput MS-based antibody analysis assays related to SARS-CoV-2 and other coronaviruses. The chemical and enantiomeric purity of chiral compounds is routinely determined within the groups full-scale chiral laboratory. Methods development with the chiral chromatography screening protocol involves the utilization of various chiral stationary phases in conjunction with multiple mobile phase conditions. The use of an inline chiral detector allows for the determination of relative optical rotation. Sample purification on a scale of up to hundreds of milligrams is possible. The ACC has performed analysis, separation, and purification of chiral compounds containing a wide range of chemotypes associated with various projects for both internal and external collaborators. There has also been an increase in requests for vibrational circular dichroism (VCD) spectrometry analysis to determine the absolute stereochemistry chiral compounds being synthesized at NCATS. We are in continued collaboration with the NCATS IT team to deploy of conformational analysis software onto the NCATS high-performance computing (HPC) cluster. The reduced computing time needed to generate predicted VCD spectra for comparison with experimental results, as well as the creation of a structural confirmation database will be of great benefit to numerous research projects. NMR and MS analytical capabilities continue to expand within the ACC through the acquisition of advanced instrumentation and the incorporation of new and emerging techniques in order to detect, identify, quantify, and validate a wide array of therapeutic modalities. For NMR spectroscopy, we are building upon our fragment-based screening (FBS) program through the curation, update, and replenishment of our fragment screening libraries. Ligand-protein binding experiments were utilized to investigate protein-protein interactions (PPIs) for various disease states to aid in therapeutic development. Application of Mestrelab Stereofitter software is ongoing for the determination of 3D conformation for chiral small molecules. In collaboration with the ASPIRE program, the ACC is developing an automated quantitative NMR (qNMR) platform for concentration determination, purity determination, and reaction analysis. We have installed a Sirius MicroTasker customized for automated NMR sample preparation, which will help facilitate a more efficient preparation of samples for a wide array of NMR analyses, as well as increase productivity. For mass spectrometry, we acquired a Waters Xevo G2-XS quantitative time-of-flight (QTOF) mass spectrometer, which is a replacement for a obsoleted TOF MS. This more advanced instrument expands our MS capabilities and will be extremely beneficial to metabolomics analysis. In addition to our already established and highly successful proteomics platform, we are expanding into metaboloics and lipidomics as part of an effort to create a multi-omics program for biological analysis. We have continued to improve upon our universal 384-well proteomic sample preparation platform for high-throughput screening and biomarker discovery. This involves upgrades and increased functionality enabling wider applicability to an array of cellular systems, as well as varied assay needs. The successful workflow utilizes an Agilent Bravo liquid handler to automate the majority of process steps leading to greater efficiency, higher throughput, and reduced costs. The sample preparation platform was so successful that an additional Bravo system was installed to meet the workload demands from increased analysis requests. Additionally, the ACC has upgraded an Agilent RapidFire-QQQ high-throughput mass spectrometry system to handle 1536-well assay plates. After developing and validating the new methods, the high-through screening capacity of the system will increase four-fold. The Sample Management and Resource Tracking (SMART) laboratory information management system (LIMS), in conjunction with our centralized purification and sample processing platform is uti
在过去的一年里,COVID-19 全球大流行对 ACC 产生了重大影响,包括必要的实验室关闭、实验室操作程序的修改以及向远程办公状态的转变。由于 ACC 的大部分任务和职责都需要进入实验室,因此我们面临着提供核心分析化学服务同时维护 DPI 员工健康和安全的后勤挑战。研究活动优先考虑与新冠病毒相关的项目,其次是需要最少实验才能完成的正在进行的项目,特别是实习生项目,因为他们在 NCATS 的时间有限。新项目的启动受到限制,除非它们专注于 COVID-19。 DPI 研究项目、举措和计划的持续成功取决于分析服务和资源的不间断运行,这有助于推动进展和转化发现。此外,必须以方便的格式及时提供分析数据和分析,以便就项目的方向甚至继续进行及时、明智的决策。为了实现这一目标,ACC 需要开发新的协议和工作流程并修改现有协议和工作流程,以应对新运营模式下增加的工作量。这包括 (i) 对样品纯化和处理平台进行修改,以最大程度地减少向化合物管理转移材料的延迟,(ii) 能够直接访问仪器数据以进行远程分析和审查,(iii) 建立在社交距离较远的情况下进行培训的方法新员工和研究员的方式,以及 (iv) 以完全虚拟的方式维护和更新化学软件和应用程序。 ACC 继续履行纯化毫克至克范围内材料样品的核心职责。主要和次要成分(< 0.1%)已被隔离,以便根据需要进行额外的测试和表征。通过利用集中式样品纯化和处理平台,可以在一周的周期内分离、纯化、浓缩、分配、登记化合物并为生物测试做好准备。采用自动化方案和工作流程来执行纯化组分的合并和浓缩以及将材料分配到 1D 条形码小瓶、Matrix 2D 条形码管和/或 96 孔板等任务,以实现高效跟踪、存储和测试。利用各种高性能和超高性能液相色谱仪来确定身份和纯度,并具有在单四极杆液相色谱/质谱仪器上进行自动高通量分析的能力。由于测试的分析物种类繁多,该团队的分析检测器范围包括紫外 (UV)、质谱(MS;正负模式)以及蒸发光散射检测器和荧光 (ELSD)。采用飞行时间质谱(TOF-MS)来实现化学式确认和未知物的身份确定。 除了与 COVID-19 相关的化学实体的纯化和分析之外,ACC 还建立了多个专注于 COVID-19 研究的项目合作。其中一项合作是 ACC、DPI 信息学核心和早期转化分支 (ETB) 3D 组织生物打印小组之间的合作,该小组致力于 2D 和 3D 肺细胞组学模型,利用我们的经验发现与 SARS-CoV-2 相关的化学和生物标记代谢组学、蛋白质组学、组织打印、基于 MS 的筛选分析和数据分析。此外,我们还与 ETB 合作,专注于猫冠状病毒治疗药物 Mutian 的成分分析,并与治疗开发部门 (TDB) 内的 ADME 团队合作,开发与 SARS 相关的基于 MS 的高通量抗体分析方法。 CoV-2 和其他冠状病毒。 手性化合物的化学和对映体纯度通常在集团的全规模手性实验室内测定。手性色谱筛选方案的方法开发涉及各种手性固定相与多种流动相条件的结合。使用在线手性检测器可以确定相对旋光度。样品纯化规模可达数百毫克。 ACC 已对包含与内部和外部合作者的各种项目相关的多种化学型的手性化合物进行了分析、分离和纯化。对振动圆二色性 (VCD) 光谱分析以确定 NCATS 合成的绝对立体化学手性化合物的需求也有所增加。我们正在与 NCATS IT 团队持续合作,将构象分析软件部署到 NCATS 高性能计算 (HPC) 集群上。生成预测 VCD 光谱以与实验结果进行比较所需的计算时间以及结构确认数据库的创建将大大有利于众多研究项目。 通过购买先进仪器并采用新兴技术,核磁共振和质谱分析能力在 ACC 内不断扩展,以检测、识别、量化和验证各种治疗方式。对于 NMR 波谱,我们正在通过片段筛选库的管理、更新和补充来构建基于片段的筛选 (FBS) 计划。利用配体-蛋白质结合实验来研究各种疾病状态的蛋白质-蛋白质相互作用(PPI),以帮助治疗开发。正在应用 Mestrelab Stereofitter 软件来确定手性小分子的 3D 构象。 ACC 与 ASPIRE 计划合作,正在开发一个自动定量 NMR (qNMR) 平台,用于浓度测定、纯度测定和反应分析。我们安装了专为自动化 NMR 样品制备而定制的 Sirius MicroTasker,这将有助于更有效地制备用于各种 NMR 分析的样品,并提高生产率。对于质谱分析,我们购买了 Waters Xevo G2-XS 定量飞行时间 (QTOF) 质谱仪,它是过时的 TOF MS 的替代品。这种更先进的仪器扩展了我们的 MS 能力,将对代谢组学分析极其有益。除了我们已经建立且非常成功的蛋白质组学平台外,我们还扩展到代谢组学和脂质组学,作为创建生物分析多组学计划的一部分。我们不断改进通用 384 孔蛋白质组样品制备平台,用于高通量筛选和生物标志物发现。这涉及升级和增加功能,从而能够更广泛地适用于一系列细胞系统以及各种检测需求。成功的工作流程利用 Agilent Bravo 液体处理器实现大部分工艺步骤的自动化,从而提高效率、提高通量并降低成本。样品制备平台非常成功,因此安装了额外的 Bravo 系统来满足分析请求增加的工作负载需求。此外,ACC 还升级了 Agilent RapidFire-QQQ 高通量质谱系统,以处理 1536 孔分析板。新方法开发并验证后,系统的高通量筛选能力将增加四倍。 样品管理和资源跟踪 (SMART) 实验室信息管理系统 (LIMS) 与我们的集中纯化和样品处理平台相结合

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Christopher Arthur LeClair其他文献

Christopher Arthur LeClair的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Christopher Arthur LeClair', 18)}}的其他基金

Analytical Chemistry
分析化学
  • 批准号:
    10261245
  • 财政年份:
  • 资助金额:
    $ 208.15万
  • 项目类别:
Analytical Chemistry
分析化学
  • 批准号:
    10682311
  • 财政年份:
  • 资助金额:
    $ 208.15万
  • 项目类别:
Analytical Chemistry
分析化学
  • 批准号:
    10907371
  • 财政年份:
  • 资助金额:
    $ 208.15万
  • 项目类别:

相似国自然基金

单一取向CsPbBr3一维光波导阵列在异质半导体低维结构上的面内集成及其在光电互联中的应用研究
  • 批准号:
    62374057
  • 批准年份:
    2023
  • 资助金额:
    48 万元
  • 项目类别:
    面上项目
Ti3C2Tx诱导锌金属负极表面三维重构及锌沉积调控新机制研究
  • 批准号:
    52372236
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
本征二维磁性材料CrI3的缺陷原子结构与磁性关联研究
  • 批准号:
    12304019
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
三维有序大/介孔稀土氧化物(La2O3和CeO2)负载Ru催化剂用于氨分解性能研究
  • 批准号:
    52361040
  • 批准年份:
    2023
  • 资助金额:
    32 万元
  • 项目类别:
    地区科学基金项目
应变调控二维磁性材料VX3的磁光拉曼研究
  • 批准号:
    12304042
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Teratogenicity assessment of new antiviral drugs using 3D morphogenesis models
使用 3D 形态发生模型评估新型抗病毒药物的致畸性
  • 批准号:
    10741474
  • 财政年份:
    2023
  • 资助金额:
    $ 208.15万
  • 项目类别:
High-throughput Imaging-integrated Vascular Model for Understanding Thromboembolism and Therapeutics Screening
用于了解血栓栓塞和治疗筛选的高通量成像集成血管模型
  • 批准号:
    10564808
  • 财政年份:
    2023
  • 资助金额:
    $ 208.15万
  • 项目类别:
Immune-epithelial progenitor interactions drive age-associated dysplastic lung repair post viral pneumonia
免疫上皮祖细胞相互作用驱动病毒性肺炎后与年龄相关的发育不良肺修复
  • 批准号:
    10751699
  • 财政年份:
    2023
  • 资助金额:
    $ 208.15万
  • 项目类别:
Johns Hopkins Human Temporal Bone Resource
约翰霍普金斯大学人类颞骨资源
  • 批准号:
    10705769
  • 财政年份:
    2022
  • 资助金额:
    $ 208.15万
  • 项目类别:
Generative neural networks for structure-based antibody design
用于基于结构的抗体设计的生成神经网络
  • 批准号:
    10505034
  • 财政年份:
    2022
  • 资助金额:
    $ 208.15万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了