The Role of eIF4G1 and eIF4G2 in Translational Control of Adipogenesis and Obesity
eIF4G1 和 eIF4G2 在脂肪生成和肥胖转化控制中的作用
基本信息
- 批准号:10464460
- 负责人:
- 金额:$ 6.72万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-07-01 至 2025-06-30
- 项目状态:未结题
- 来源:
- 关键词:3T3-L1 CellsAddressAdipocytesAdipose tissueAdultBODIPYBindingBinding SitesBiologicalBiological AssayBiological ModelsCell ProliferationCell physiologyCellsChronicCiliaClustered Regularly Interspaced Short Palindromic RepeatsComplexCuesCyclic AMPDataDegenerative polyarthritisDepositionDevelopmentDiabetes MellitusDiseaseEventFailureFatty AcidsFatty acid glycerol estersFutureG-Protein-Coupled ReceptorsGene TargetingGenerationsGenesGenetic ModelsGenetic TranscriptionGoalsHarvestHealthHeart DiseasesHistologyHomologous ProteinHormonesHumanHypertensionHypertrophyIn VitroIncidenceInflammationInflammatoryInsulinInsulin ResistanceKineticsKnock-outKnockout MiceLeadLifeLigandsLinkLipidsMaintenanceMalignant NeoplasmsMammalsMediatingMesenchymal Stem CellsMessenger RNAMetabolicMetabolic DiseasesMetabolismModificationMorbid ObesityNon-Insulin-Dependent Diabetes MellitusObese MiceObesityOmega-3 Fatty AcidsPancreatitisParkinson DiseasePathologyPathway interactionsPatientsPeptide Initiation FactorsPopulationPrevalenceProcessProteinsRegulationRibosomesRiskRoleSignal TransductionSorting - Cell MovementSourceStainsSupplementationSurfaceSymptomsSystemTechniquesTestingTherapeuticTimeTissuesTrainingTranscriptTranslation InitiationTranslationsTriglyceridesUnited StatesWeight GainWorkadipocyte differentiationbasechemokinecytokinefatty liver diseasegenome wide screengenome-widein vivoinhibitorinsightlipid biosynthesismouse geneticsmouse modelneurotransmissionnovelpredictive testpreventprogramsreceptorrecruitreduce symptomsscreeningtargeted treatmenttherapeutic developmenttherapeutic targetvision development
项目摘要
PROJECT SUMMARY
Obesity, a disease caused by elevated fat mass, has increased in prevalence over the past few decades.
Over 30% of the population suffers from obesity, and over time it can lead to increased incidence of life-
threatening pathologies, including Type II Diabetes, heart disease, and cancer. Much study has been devoted
to finding new treatments, which remain ineffective because 1) obesity is highly polygenic, and 2) they ameliorate
symptoms rather than target the disease source. It is urgent to identify pathways disrupted in obesity to develop
better therapeutics that more precisely treat the case-specific source of fat mass expansion.
My lab contributed to this effort by performing a genome-wide screen for fat mass-regulating GPCRs and
discovered FFAR4, a ciliary GPCR that binds ω-3 fatty acids to promote preadipocyte differentiation into new
adipocytes (adipogenesis) instead of depositing lipids in existing tissue, causing inflammation (hypertrophy).
This discovery is especially useful to human health because even though adipogenesis and hypertrophy both
cause weight gain, hypertrophy is ultimately much more pernicious because the chronic inflammation leads to
complications, including hypertension and diabetes. Therefore, understanding how FFAR4 drives preadipocyte
differentiation may help us circumvent hypertrophic obesity and downstream pathology. The mechanism by
which FFAR4 drives adipogenesis has yet to be elucidated. To do so, the Jackson lab performed the first
genome-wide CRISPR knockout screen for FFAR4-pathway adipogenesis regulators using preadipocytes
harvested at different time points post-differentiation. Our lab discovered that translation initiation factors eIF4G1
and eIF4G2, highly homologous proteins that compete for the same ribosomal binding site to drive transcript
recruitment, have opposite effects on adipogenesis downstream of FFAR4: eIF4G2 was the strongest inhibitor
and eIF4G1 was one of the strongest drivers of adipogenesis. I will test my central hypothesis that the switch
from eIF4G2-dependent to eIF4G1-dependent translation (by degradation of eIF4G2 and activation of eIF4G1),
downstream of FFAR4-induced cAMP signaling, drives fate change through converting to the translation of
transcripts that specifically promote adipogenesis. I will use a combination of 3T3-L1 preadipocytes and mouse
genetic models to gain mechanistic insight into eIF4G1/2 functions on a cellular and systemic level. In Aim 1, I
will determine the mechanism of eIF4G1/2 function in preadipocyte differentiation in vitro. I will tease apart the
pathway(s) through which eIF4G1 and eIF4G2 act by probing mechanism, tracking their kinetics in adipogenesis,
determining if they are necessary/sufficient to drive adipogenesis, and identifying the transcripts they each
regulate. In Aim 2, I will determine the role of eIF4G1/2 in fat expansion and metabolism in vivo using mouse
model systems to see how eIF4G1 and eIF4G2 function relates to multicellular systems. Taken together, my
work will pave the way for exploring the network of signaling events that drive adipogenesis downstream of the
cilium and may pave the way for therapeutics targeting monogenic sources of obesity.
项目概要
肥胖是一种由脂肪量增加引起的疾病,在过去几十年中患病率有所增加。
超过 30% 的人口患有肥胖症,随着时间的推移,它会导致生活中的发病率增加——
威胁性疾病,包括 II 型糖尿病、心脏病和癌症。
寻找新的治疗方法,但这些治疗方法仍然无效,因为 1) 肥胖是高度多基因的,2) 它们可以改善肥胖
迫切需要找出肥胖中被破坏的途径,而不是针对疾病的根源。
更好的治疗方法可以更精确地治疗特定病例的脂肪量扩张来源。
我的实验室通过对脂肪量调节 GPCR 进行全基因组筛选,为这项工作做出了贡献
发现了 FFAR4,一种纤毛 GPCR,可结合 ω-3 脂肪酸,促进前脂肪细胞分化为新脂肪细胞
脂肪细胞(脂肪生成)而不是在现有组织中沉积脂质,从而引起炎症(肥大)。
这一发现对人类健康特别有用,因为尽管脂肪生成和肥大都
导致体重增加,肥大最终危害更大,因为慢性炎症会导致
因此,了解 FFAR4 如何驱动前脂肪细胞。
分化可能有助于我们规避肥厚性肥胖和下游病理机制。
哪种 FFAR4 驱动脂肪生成尚待阐明。为此,杰克逊实验室进行了首次研究。
使用前脂肪细胞对 FFAR4 途径脂肪生成调节因子进行全基因组 CRISPR 敲除筛选
我们的实验室发现翻译起始因子 eIF4G1 在分化后的不同时间点收获。
和 eIF4G2,高度同源的蛋白质,竞争相同的核糖体结合位点来驱动转录
募集,对 FFAR4 下游的脂肪生成产生相反的影响:eIF4G2 是最强的抑制剂
eIF4G1 是脂肪生成最强大的驱动因素之一,我将检验我的中心假设:这种开关。
从 eIF4G2 依赖性翻译到 eIF4G1 依赖性翻译(通过 eIF4G2 降解和 eIF4G1 激活),
FFAR4 诱导的 cAMP 信号下游,通过转化为翻译来驱动命运改变
我将使用 3T3-L1 前脂肪细胞和小鼠的组合来特异性促进脂肪生成。
遗传模型,以深入了解 eIF4G1/2 在细胞和系统水平上的功能。
将确定 eIF4G1/2 在体外前脂肪细胞分化中的功能机制。
eIF4G1 和 eIF4G2 通过探测机制起作用的途径,跟踪它们在脂肪生成中的动力学,
确定它们是否有必要/足以驱动脂肪生成,并识别它们各自的转录本
在目标 2 中,我将使用小鼠确定 eIF4G1/2 在体内脂肪膨胀和代谢中的作用。
模型系统以了解 eIF4G1 和 eIF4G2 功能如何与多细胞系统相关。
这项工作将为探索驱动下游脂肪生成的信号事件网络铺平道路。
纤毛,可能为针对单基因肥胖源的治疗铺平道路。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Rachel Elizabeth Turn其他文献
Rachel Elizabeth Turn的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Rachel Elizabeth Turn', 18)}}的其他基金
The Role of eIF4G1 and eIF4G2 in Translational Control of Adipogenesis and Obesity
eIF4G1 和 eIF4G2 在脂肪生成和肥胖转化控制中的作用
- 批准号:
10625835 - 财政年份:2022
- 资助金额:
$ 6.72万 - 项目类别:
相似国自然基金
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
相似海外基金
The Role of eIF4G1 and eIF4G2 in Translational Control of Adipogenesis and Obesity
eIF4G1 和 eIF4G2 在脂肪生成和肥胖转化控制中的作用
- 批准号:
10625835 - 财政年份:2022
- 资助金额:
$ 6.72万 - 项目类别:
Trimming the fat with small proteins: Micropeptides in adipogenesis
用小蛋白质减少脂肪:脂肪生成中的微肽
- 批准号:
10655394 - 财政年份:2022
- 资助金额:
$ 6.72万 - 项目类别:
Mechanisms of adipocyte loss in laminopathy-induced lipodystrophy in mice and humans
小鼠和人类核纤层病诱导的脂肪营养不良中脂肪细胞损失的机制
- 批准号:
10029064 - 财政年份:2020
- 资助金额:
$ 6.72万 - 项目类别:
Mechanisms of Environmental-Mixture Induced Metabolic Disruption
环境混合物引起的代谢紊乱的机制
- 批准号:
10268263 - 财政年份:2020
- 资助金额:
$ 6.72万 - 项目类别:
Mechanisms of adipocyte loss in laminopathy-induced lipodystrophy in mice and humans
小鼠和人类核纤层病诱导的脂肪营养不良中脂肪细胞损失的机制
- 批准号:
10212385 - 财政年份:2020
- 资助金额:
$ 6.72万 - 项目类别: