Controlling Vaccine Kinetics with Small Molecule Drugs
用小分子药物控制疫苗动力学
基本信息
- 批准号:10464208
- 负责人:
- 金额:$ 6.98万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-07-01 至 2025-06-30
- 项目状态:未结题
- 来源:
- 关键词:AddressAdjuvantAntibodiesAntibody ResponseAntigen PresentationAntigensBolus InfusionCell NucleusCellsCellular ImmunityCommunicable DiseasesComplexCuesCytoplasmDNADNA-Directed RNA PolymeraseDevelopmentDoseEngineeringEpidemicExposure toFDA approvedGene Expression RegulationGenesGenomeGenomicsHIVHIV-1HIV/TBHealthHumoral ImmunitiesImmune responseImmunityImmunizationImmunologic MemoryInfectionInflammatoryInjectionsInterleukin-12Interleukin-2KineticsLaboratoriesLymphocyteLymphoid TissueMHC Class I GenesMalariaMediatingMessenger RNAMethodsModelingMolecularMolecular ConformationNucleic Acid VaccinesNucleic AcidsOralOral AdministrationOutcomePatternPharmaceutical PreparationsPlayProductionProteinsRNARNA vaccineRepliconReporterRiskRoleScheduleShapesSubunit VaccinesT cell responseT-LymphocyteTherapeuticTrimethoprimTuberculosisVaccinationVaccine AntigenVaccine DesignVaccinesWorkclinically translatablecompliance behaviorcytokinedesignglobal healthimmunoengineeringin vivoinfluenza epidemicinnovationinsightinterestlymph nodesnovelpandemic diseasepillreplicon vaccineresponseseasonal influenzasmall moleculesynthetic biologytherapeutic DNAtooltransgene expressiontranslatable strategytranslation to humansvaccination strategyvaccine developmentvaccine efficacyvaccine immunogenicityvaccine platformvaccine strategyvaccine-induced immunity
项目摘要
PROJECT SUMMARY
Infectious diseases such as HIV, malaria, tuberculosis, and seasonal influenza epidemics and emergence of
new pandemics remain major global health problems highlighting the need for innovative approaches in vaccine
design. The precise kinetics of antigen exposure relative to inflammatory cues is known to play a critical role in
shaping a coordinated cellular and humoral immunity and thereby enhancing the vaccine immunogenicity and
efficacy. Current vaccination strategies, however, do not include mechanisms for the temporal control of antigen
and adjuvant exposure to lymphoid tissues. Here, we propose incorporating synthetic biology approaches
to create nucleic acid-based vaccines where the kinetics of vaccine (antigen and adjuvant) exposure can
be controlled using orally-available FDA-approved small molecule drugs. This strategy is enabled using
self-replicating RNAs termed replicons that encode antigens and cytokine molecular adjuvants and encompass
regulatory mechanisms governed by the FDA-approved small molecule drug, trimethoprim (TMP). This strategy
allows the delivery of replicons encoding antigens and cytokines in vivo with a single bolus injection and then
controlling the amplitude and duration of antigen and cytokine expression by oral administration of TMP. Using
the RNA replicon platform provides several advantages: (i) it allows antigens and cytokines to be produced in
their native conformation; (ii) it self-replicates and therefore persists inside the cells longer than mRNA and
sustains a steady supply of “fresh” antigen and adjuvant; (iii) unlike DNA therapeutics, it does not harbor the risk
of genome integration and also does not require delivery to the nucleus for transgene expression. An HIV
envelope immunogen, known as the engineered outer domain (eOD-GT8), will be used as the model antigen,
and interleukine-2 and interleukine-12 will be used as the cytokine molecular adjuvants.
The Specific Aims of this project are: (1) Generate small molecule-responsive RNA replicon vaccines enabling
control over the dynamics of antigen and adjuvant expression. (2) Identify optimal temporal patterns of antigen
and adjuvant exposure maximizing the protective immunity elicited by replicon vaccines. Results from this project
will establish a vaccine platform that allows modulating and promoting the magnitude and quality of T cell and
antibody responses following immunization by taking a drug available as an oral pill, as a simple and clinically-
translatable strategy to enhance vaccine-induced immunity. In addition, elucidating the optimal cytokine and
antigen exposure patterns that confer protection will provide critical information and insights for use in conceiving
better vaccine design strategies.
项目概要
艾滋病毒、疟疾、结核病和季节性流感等传染病的流行和新冠病毒的出现
新的流行病仍然是全球主要健康问题,凸显了疫苗创新方法的必要性
众所周知,相对抗原暴露于炎症信号的精确动力学在其中发挥着关键作用。
形成协调的细胞免疫和体液免疫,从而增强疫苗的免疫原性和
然而,当前的疫苗接种策略不包括抗原的时间控制机制。
在这里,我们建议结合合成生物学方法。
创造基于核酸的疫苗,其中疫苗(抗原和佐剂)暴露的动力学可以
使用经 FDA 批准的口服小分子药物进行控制。
自我复制的RNA称为复制子,编码抗原和细胞因子分子佐剂并涵盖
监管机制由 FDA 批准的小分子药物甲氧苄啶 (TMP) 控制。
允许通过单次推注在体内递送编码抗原和细胞因子的复制子,然后
通过口服 TMP 控制抗原和细胞因子表达的幅度和持续时间。
RNA 复制子平台具有以下几个优点:(i) 它允许在
它们的天然构象;(ii) 它能够自我复制,因此在细胞内的存在时间比 mRNA 长
维持“新鲜”抗原和佐剂的稳定供应;(iii) 与 DNA 疗法不同,它不存在风险
基因组整合,也不需要传递到细胞核进行转基因表达。
被称为工程外域(eOD-GT8)的包膜免疫原将用作模型抗原,
细胞因子分子佐剂采用白细胞介素2和白细胞介素12。
该项目的具体目标是: (1) 生成小分子响应性 RNA 复制子疫苗,使
(2) 确定抗原的最佳时间模式
和佐剂暴露最大化复制子疫苗引起的保护性免疫。
将建立一个疫苗平台,可以调节和促进 T 细胞的数量和质量,
通过服用口服药丸形式的药物进行免疫接种后产生抗体反应,作为一种简单的临床方法
此外,还阐明了最佳细胞因子和增强疫苗诱导免疫力的可转化策略。
提供保护的抗原暴露模式将为受孕提供关键信息和见解
更好的疫苗设计策略。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Parisa Yousefpour其他文献
Parisa Yousefpour的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Parisa Yousefpour', 18)}}的其他基金
Controlling Vaccine Kinetics with Small Molecule Drugs
用小分子药物控制疫苗动力学
- 批准号:
10633105 - 财政年份:2022
- 资助金额:
$ 6.98万 - 项目类别:
相似国自然基金
展示PD-L1抗体的纳米锰佐剂联合放疗以诱导原位肿瘤疫苗的产生及其机制的探究
- 批准号:32371518
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
超声响应型纳米免疫佐剂激活STING通路增效PD-L1抗体抑制消融后肝癌复发的作用及机制研究
- 批准号:
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
多肽水凝胶佐剂基于TLR2信号通路调节HIV疫苗抗体依赖细胞介导细胞毒性的研究
- 批准号:31500816
- 批准年份:2015
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
I 型组织相容性复合物(MHC-I) 轻链β2微球蛋白(β2m)在抗细菌感染免疫中的作用及其机制
- 批准号:31370928
- 批准年份:2013
- 资助金额:80.0 万元
- 项目类别:面上项目
纳米粒子作为血吸虫病疫苗佐剂的应用研究
- 批准号:30170836
- 批准年份:2001
- 资助金额:21.0 万元
- 项目类别:面上项目
相似海外基金
Developing RNA Vaccines to Treat Peanut Hypersensitivity
开发治疗花生过敏的 RNA 疫苗
- 批准号:
10570339 - 财政年份:2023
- 资助金额:
$ 6.98万 - 项目类别:
Multidomain Peptide Hydrogels as a Therapeutic Delivery Platform for Cancer Treatment
多域肽水凝胶作为癌症治疗的治疗传递平台
- 批准号:
10743144 - 财政年份:2023
- 资助金额:
$ 6.98万 - 项目类别:
Novel humanized mouse model of mucosal immunity
新型人源化小鼠粘膜免疫模型
- 批准号:
10591854 - 财政年份:2023
- 资助金额:
$ 6.98万 - 项目类别:
Adjuvant effect of physical exercise on immune response to COVID-19 vaccination and interactions with stress
体育锻炼对 COVID-19 疫苗接种免疫反应的辅助作用以及与压力的相互作用
- 批准号:
10593597 - 财政年份:2023
- 资助金额:
$ 6.98万 - 项目类别:
Evaluation of a Next Generation SchistoShield Vaccine
下一代 SchistoShield 疫苗的评估
- 批准号:
10761529 - 财政年份:2023
- 资助金额:
$ 6.98万 - 项目类别: