The Physiology of Oxidative Stress in Escherichia coli
大肠杆菌氧化应激的生理学
基本信息
- 批准号:10458048
- 负责人:
- 金额:$ 54.83万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:1994
- 资助国家:美国
- 起止时间:1994-05-01 至 2025-06-30
- 项目状态:未结题
- 来源:
- 关键词:AcetatesAerobicAffectAlcohol dehydrogenaseAnaerobic BacteriaAnoxiaAppearanceBinding SitesBiochemicalCell physiologyCellsCellular StressChemistryCollaborationsCysteineDNA DamageDataDiseaseElectronsEnvironmentEnzymesEscherichia coliEventFamilyFermentationGenesGlucoseGoalsGrantGrowthGrx1 proteinHydrogen PeroxideHydroxyl RadicalImpairmentIn VitroInjuryIronKnowledgeLiteratureLyaseMass Spectrum AnalysisMeasurementMediatingMetabolicMetabolismMetal Binding SiteMetalsMethionineMicrobeMinorModelingModificationMolecularMononuclearNamesNatural regenerationOxidantsOxidation-ReductionOxidative StressOxidesOxidoreductaseOxygenPeroxidesPharmaceutical PreparationsPhenotypePhysiologicalPhysiologyPlant RootsPlayPriceProteinsProteomePyruvatePyruvate Metabolism PathwayReactionReactive Oxygen SpeciesRegulonRoleSiteSolventsSourceStressSulfateSulfhydryl CompoundsSulfurSulfur Metabolism PathwaySuperoxidesSystemTXN geneTestingThioredoxin-2Toxic effectWorkZincbiological adaptation to stresscell growthdithiolfitnessformate acetyltransferase activating enzymeglutaredoxinin vivo evaluationiron oxidationiron oxidemembermetalloenzymemethionine sulfoxidemicrobialoxidationreconstructionredoxinrepairedresponseside effecttranscriptome sequencingtranscriptomicswastingweapons
项目摘要
We have learned that most oxidative toxicity arises when oxygen species attack enzymic iron centers
and that cellular defenses work by blocking, reversing, or by-passing the resultant injuries. Yet key
observations remain unexplained. In Aim 1 we will investigate why superoxide stress precludes the use of
sulfate as a sulfur source, and we will examine why thioredoxins and glutaredoxins are strongly induced as
part of the cellular reaction to hydrogen peroxide. Extensive work has led us to the proposal that intracellular
cysteine and redoxins help to repair damaged metalloenzyme centers. This model would identify a key
connection between sulfur redox state and ROS.
Two enzymes dedicated to anaerobic metabolism—pyruvate:formate lyase activating enzyme and
alcohol dehydrogenase—have been suggested to be inactivated by iron-centered oxidation events when cells
are aerated. This would comprise a clever exploitation of reaction types that are usually harmful. The goal of
Aim 2 is to test this striking idea. This hypothesis leads to notions of how the cell might seamlessly restore
anaerobic metabolism when anoxia is restored.
Protein carbonylation (Aim 3) has long been used as a convenient marker of oxidative stress—but the
underlying events and physiological impact are unclear. Our data indicate that carbonylation is focused upon
relatively few proteins rather than the full proteome, and we suspect that these proteins are mononuclear Fe(II)
enzymes. Global mass spectrometry will identify them by name. We will also test the idea that methionine
sulfoxide is a disproportionate Fenton product that reductases can repair. The novelty is that methionine may
be oxidized by a secondary electron-hopping event, rather than by direct attack.
Finally, in Aim 4 we will take a transcriptomic approach to fully define the OxyR peroxide response. We
hope to explain our discovery that OxyR activation per se compromises cells fitness, to the point of prohibiting
growth on acetate. It is not surprising that a stress response should exert a price, but we do not yet recognize
why any OxyR-driven adaptation would have such a profound effect.
The emergent theme of oxidative stress is the tendency of oxygen species to react with iron centers,
and of cells to respond with layers of defensive tactics. Our four Aims will build upon this knowledge by
tackling persistent questions, with the overall goal of assembling a picture of oxidative stress that is detailed,
quantitative, and unified.
我们了解到,大多数氧化毒性是在氧物质攻击酶铁中心时产生的
细胞防御通过阻止、逆转或绕过由此产生的损伤来发挥作用。
在目标 1 中,我们将研究为什么超氧化物应激阻碍了使用。
硫酸盐作为硫源,我们将研究为什么硫氧还蛋白和谷氧还蛋白被强烈诱导为
细胞对过氧化氢反应的一部分使我们提出了细胞内反应的建议。
半胱氨酸和氧化还原素有助于修复受损的金属酶中心,该模型将确定一个关键。
硫氧化还原态与ROS之间的联系。
两种专门用于无氧代谢的酶——丙酮酸:甲酸裂解酶激活酶和
乙醇脱氢酶——已被认为会因细胞内以铁为中心的氧化事件而失活
这将包括巧妙地利用通常有害的反应类型。
目标 2 是测试这个引人注目的想法。这个假设引出了细胞如何无缝恢复的概念。
缺氧恢复后进行无氧代谢。
蛋白质羰基化(目标 3)长期以来一直被用作氧化应激的便捷标记,但
我们的数据表明,潜在的事件和生理影响尚不清楚。
相对较少的蛋白质而不是完整的蛋白质组,我们怀疑这些蛋白质是单核 Fe(II)
酶。全局质谱法将通过名称来识别它们。我们还将测试蛋氨酸的想法。
亚砜是还原酶可以修复的芬顿歧化产物,新颖之处在于蛋氨酸可以修复。
通过二次电子跳跃事件被氧化,而不是通过直接攻击。
最后,在目标 4 中,我们将采用转录组学方法来全面定义 OxyR 过氧化物反应。
希望解释我们的发现,即 OxyR 激活本身会损害细胞健康,甚至禁止
压力反应会产生代价并不奇怪,但我们尚未认识到。
为什么任何 OxyR 驱动的适应都会产生如此深远的影响。
氧化应激的新主题是氧物质与铁中心反应的趋势,
我们的四个目标将建立在这些知识的基础上
破坏长期存在的问题,总体目标是构建一幅详细的氧化应激图景,
数量化、统一化。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
JAMES A. IMLAY其他文献
JAMES A. IMLAY的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('JAMES A. IMLAY', 18)}}的其他基金
Soft Metal, Disulfide, and Cysteine Stresses in Escherichia coli
大肠杆菌中的软金属、二硫化物和半胱氨酸应力
- 批准号:
8623137 - 财政年份:2012
- 资助金额:
$ 54.83万 - 项目类别:
Soft Metal, Disulfide, and Cysteine Stresses in Escherichia coli
大肠杆菌中的软金属、二硫化物和半胱氨酸应力
- 批准号:
8461150 - 财政年份:2012
- 资助金额:
$ 54.83万 - 项目类别:
Oxidative stress and the cellular thiol status of Escherichia coli
大肠杆菌的氧化应激和细胞硫醇状态
- 批准号:
9238154 - 财政年份:2012
- 资助金额:
$ 54.83万 - 项目类别:
Soft Metal, Disulfide, and Cysteine Stresses in Escherichia coli
大肠杆菌中的软金属、二硫化物和半胱氨酸应力
- 批准号:
8271819 - 财政年份:2012
- 资助金额:
$ 54.83万 - 项目类别:
The Physiology of Oxidative Stress in Escherichia coli
大肠杆菌氧化应激的生理学
- 批准号:
7932504 - 财政年份:2009
- 资助金额:
$ 54.83万 - 项目类别:
MECHANISM OF OXIDATIVE DNA DAMAGE IN MODEL ORGANISMS
模型生物中 DNA 氧化损伤的机制
- 批准号:
2807383 - 财政年份:1999
- 资助金额:
$ 54.83万 - 项目类别:
相似国自然基金
有氧运动及HDAC4/5对骨骼肌细胞代谢酶乙酰化的影响及其在改善胰岛素抵抗过程中机制研究
- 批准号:32371186
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
从“动而中节”探讨有氧运动调节线粒体动力学影响乳酸穿梭在肝癌预防中的作用
- 批准号:
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
有氧运动与视频游戏的联合训练对老年人记忆及海马可塑性的影响
- 批准号:
- 批准年份:2020
- 资助金额:58 万元
- 项目类别:面上项目
CHRONO-BMAL1通路调节骨骼肌糖代谢及其影响有氧运动能力的分子机制
- 批准号:32071168
- 批准年份:2020
- 资助金额:58 万元
- 项目类别:面上项目
有氧运动通过HDAC4影响线粒体能量代谢改善梗死后心力衰竭机制研究
- 批准号:81800348
- 批准年份:2018
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Targeting Lipid Oxidation for Prostate Cancer Imaging and Therapy
针对前列腺癌成像和治疗的脂质氧化
- 批准号:
9123423 - 财政年份:2012
- 资助金额:
$ 54.83万 - 项目类别:
Targeting Lipid Oxidation for Prostate Cancer Imaging and Therapy
针对前列腺癌成像和治疗的脂质氧化
- 批准号:
8351589 - 财政年份:2012
- 资助金额:
$ 54.83万 - 项目类别:
Targeting Lipid Oxidation for Prostate Cancer Imaging and Therapy
针对前列腺癌成像和治疗的脂质氧化
- 批准号:
8708518 - 财政年份:2012
- 资助金额:
$ 54.83万 - 项目类别:
Targeting Lipid Oxidation for Prostate Cancer Imaging and Therapy
针对前列腺癌成像和治疗的脂质氧化
- 批准号:
8541798 - 财政年份:2012
- 资助金额:
$ 54.83万 - 项目类别:
Targeting Lipid Oxidation for Prostate Cancer Imaging and Therapy
针对前列腺癌成像和治疗的脂质氧化
- 批准号:
8912421 - 财政年份:2012
- 资助金额:
$ 54.83万 - 项目类别: