Investigating Neural Processing of Cerebrovascular Dynamics via Calcium Imaging of Vascular Cells and Neurons, and by Optogenetic Vascular Pertubation, In Vivo
通过血管细胞和神经元的钙成像以及体内光遗传学血管微管研究脑血管动力学的神经处理
基本信息
- 批准号:10458534
- 负责人:
- 金额:$ 2.37万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-08-01 至 2022-10-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAdenosineAdenosine A1 ReceptorAffectAlzheimer&aposs DiseaseAnatomyAreaArteriesAstrocytesAutomobile DrivingBasic ScienceBlood VesselsBlood capillariesBlood flowCalciumCaliberCationsCellsCentral Nervous System DiseasesCerebrovascular CirculationCerebrovascular systemCharacteristicsChloridesClinical ResearchCommunicationDataDiseaseEndotheliumEnvironmentEventFrequenciesFunctional Magnetic Resonance ImagingGlutamatesHalorhodopsinsHomeostasisHyperemiaHypertensionImageIschemiaKnowledgeLeadLocationMapsMediatingMedicineMentorshipMultiple SclerosisNatureNerve BlockNeuraxisNeurogliaNeuronsNeurosciencesNeurosciences ResearchOutcomeParkinson DiseasePharmacologyPopulationPumpReportingResearchResearch TrainingRoleScienceSensorySignal TransductionSmooth MuscleSmooth Muscle MyocytesSomatosensory CortexSourceStereotypingSystemTactileTestingTrainingUniversitiesWritingantagonistarteriolebasebrain endothelial cellcalcium indicatorcerebrovascularconstrictionexperimental studyglutamatergic signalinghemodynamicsin vivoin vivo two-photon imaginginsightneural circuitneuronal cell bodyneurovascularoptogeneticspreventprogramsreceptorrelating to nervous systemresponsetactile stimulationtherapy developmenttwo-photon
项目摘要
PROJECT SUMMARY
Understanding neural-vascular communication is vital to clinical and basic research. Perivascular neuron
(PVN) activity can drive cerebral blood vessel dynamics. However, the impact of vascular events on neural
activity has been only sparsely investigated. Our lab has found that a population of PVNs in primary
somatosensory cortex (SI) encode cerebrovascular activity in vivo. However, the nature of this encoding, and its
anatomical organization, is untested. Vessel-to-PVN signaling may support vascular homeostasis and rich
communication across systems. These signals are relevant for research using blood flow to map neural activity
(e.g., fMRI). Investigating perturbations of this signaling may elucidate mechanisms of cerebrovascular
disfunction (e.g., as in ischemia, Parkinson’s Disease, and M.S.).
To analyze PVN encoding of vascular activity, I will use in vivo two-photon imaging of neural and vascular
cells, and optogenetics to perturb vessels and analyze the PVN response. In Aim I, I will test the hypothesis
that vascular-encoding PVNs occur commonly in SI, and their activity is organized by cortical layer and vascular
compartment, by expressing calcium indicators (jRGECO1a) in neurons and (GCaMP6f) in vascular endothelia
to image their activity simultaneously. My preliminary data identified spatially distinct calcium events in the
vascular signal that predict subsequent PVN activity. In this paradigm, the frequency of vessel responsive PVNs
will be categorized by their stereotyped activity and anatomical location. Preliminary data in our lab has also
shown that selective optogenetic vascular drive can modulate PVN activity. In Aim II, I will test the hypothesis
that PVNs driven by optogenetically evoked vascular diameter changes will also be organized anatomically by
their activity, that and their response to endogenous vascular events will parallel their response to optogenetic
vascular drive. I will optogenetically constrict SI blood vessels by driving endothelial channelrhodopsin, dilate
them with smooth muscle halorhodopsin, and evoke natural tactile driven functional hyperemia, to analyze the
responses of PVNs expressing GCaMP6s. In Aim III, I will test the hypothesis that PVN responses to
optogenetically driven vascular activity can be pharmacologically perturbed by TRPV4 and adenosine A1 receptor
antagonists, but that they are likely unaffected by blocking glutamatergic signaling. I will test this prediction by
evoking PVN responses to optogenetic vascular activity as in Aim II, and by exposing SI cortex to receptor
antagonists.
Training Environment: This project will take place over three years in the Brown University
Neuroscience Graduate Program under the mentorship of Dr. Christopher Moore. The Research Training Plan
includes didactic professional, technical, and science writing training, as well as hands-on technical seminars.
项目概要
了解神经血管通讯对于血管周围神经元的临床和基础研究至关重要。
(PVN)活动可以驱动脑血管动力学,但是血管事件对神经的影响。
我们的实验室仅对原发性 PVN 的活动进行了很少的研究。
体感皮层(SI)编码体内的脑血管活动,但是这种编码的性质及其。
解剖组织中的血管至 PVN 信号传导可能支持血管稳态和丰富。
这些信号与使用血流绘制神经活动图的研究相关。
(例如,功能磁共振成像)研究这种信号传导的扰动可以阐明脑血管的机制。
功能障碍(例如缺血、帕金森病和多发性硬化症)。
为了分析血管活动的 PVN 编码,我将使用神经和血管的体内双光子成像
在目标 I 中,我将检验这一假设。
血管编码 PVN 常见于 SI,其活动由皮质层和血管组织
通过在神经元中表达钙指示剂(jRGECO1a)和在血管内皮细胞中表达钙指示剂(GCaMP6f)
我的初步数据确定了空间中不同的钙事件。
预测后续 PVN 活动的血管信号 在此范例中,血管反应性 PVN 的频率。
我们实验室的初步数据也将根据它们的定型活动和解剖位置进行分类。
研究表明,选择性光遗传学血管驱动可以调节 PVN 活性,在 Aim II 中,我将检验这一假设。
由光遗传学诱发的血管直径变化驱动的 PVN 也将通过解剖学组织
他们的活动,以及他们对内源性血管事件的反应将与他们对光遗传学的反应平行
我将通过驱动内皮通道视紫红质以光遗传学方式收缩 SI 血管,扩张。
将它们与平滑肌盐视紫红质结合,并引起自然触觉驱动的功能性充血,以分析
在目标 III 中,我将测试 PVN 对表达 GCaMP6 的反应的假设。
TRPV4 和腺苷 A1 受体可在药理学上扰乱光遗传学驱动的血管活动
拮抗剂,但它们可能不受阻断谷氨酸信号传导的影响,我将通过以下方式测试这一预测。
如 Aim II 中那样,通过将 SI 皮层暴露于受体来唤起 PVN 对光遗传学血管活动的反应
对手。
培训环境:该项目将在布朗大学进行三年
克里斯托弗·摩尔博士指导下的神经科学研究生计划研究培训计划。
包括教学专业、技术和科学写作培训,以及实践技术研讨会。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Eric M Klein其他文献
Eric M Klein的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Eric M Klein', 18)}}的其他基金
Investigating Neural Processing of Cerebrovascular Dynamics via Calcium Imaging of Vascular Cells and Neurons, and by Optogenetic Vascular Pertubation, In Vivo
通过血管细胞和神经元的钙成像以及体内光遗传学血管微管研究脑血管动力学的神经处理
- 批准号:
10223241 - 财政年份:2020
- 资助金额:
$ 2.37万 - 项目类别:
相似国自然基金
基于肝脏腺苷A1受体调控的PKA-SCAP-SREBP1c通路研究知母皂苷AⅢ治疗NAFLD的分子机理
- 批准号:82374129
- 批准年份:2023
- 资助金额:48 万元
- 项目类别:面上项目
电针调控中枢腺苷A1/A2A受体平衡抑制炎症性肠病诱发焦虑的机制
- 批准号:
- 批准年份:2021
- 资助金额:55 万元
- 项目类别:面上项目
microRNA let-7c通过抑制PGC-1α/ABCA1途径促动脉粥样硬化及lncRNA Kcnq1ot1的调控机制研究
- 批准号:81870337
- 批准年份:2018
- 资助金额:57.0 万元
- 项目类别:面上项目
肝脏Adora1受体介导非酒精性脂肪肝形成与黄芪多糖的干预机制研究
- 批准号:81873059
- 批准年份:2018
- 资助金额:57.0 万元
- 项目类别:面上项目
A1/A3腺苷受体增敏调控小胶质细胞炎性及促髓鞘重塑修复慢性缺血性脑白质损伤作用和机制
- 批准号:81871034
- 批准年份:2018
- 资助金额:53.0 万元
- 项目类别:面上项目
相似海外基金
Modulation of local adenosine signaling to attenuate fracture pain
调节局部腺苷信号传导以减轻骨折疼痛
- 批准号:
10227375 - 财政年份:2021
- 资助金额:
$ 2.37万 - 项目类别:
Modulation of local adenosine signaling to attenuate fracture pain
调节局部腺苷信号传导以减轻骨折疼痛
- 批准号:
10390489 - 财政年份:2021
- 资助金额:
$ 2.37万 - 项目类别:
Modulation of local adenosine signaling to attenuate fracture pain
调节局部腺苷信号传导以减轻骨折疼痛
- 批准号:
10543700 - 财政年份:2021
- 资助金额:
$ 2.37万 - 项目类别: